Skip to main content
Log in

Geochemistry of Late Archaean shaly BIF formed by oxic exogenic processes: an example from Ramagiri schist belt, Dharwar Craton, India

  • Original Article
  • Published:
Chinese Journal of Geochemistry Aims and scope Submit manuscript

Abstract

The central block of the auriferous Ramagiri schist belt, in the Eastern Dharwar Craton, India consists of bimodal volcanics (mafic-felsic), shaly BIF and metasedimentary rocks. Geochemical studies of the associated shaly BIF have indicated the enrichment of the major and trace elements such as SiO2, Al2O3, TiO2, K2O, MgO, Fe2O3(T), Zr, Y, Cr, Ni, alkali and alkaline earth elements indicates that the clastic component of the shaly BIF had their contribution from the contemporaneous bimodal volcanics. The concave chondrite normalized REE patterns share ubiquitously anomalous positive cerium anomaly, absence of positive europium anomaly and the overall HREE enrichment. The REE patterns resemble those from the modern day sea water, except for positive Ce anomaly. The data suggests that arc related bimodal volcanism had been the plausible source of Fe, silica, REE and other trace elements. The coherent behaviour of Fe, Ti, Mn and P with the REEs indicates that they got incorporated from Fe–Ti–Mn bearing primary minerals and secondary products like clays. The variability of REE patterns in the BIF formation samples probably results from the differences in scavenging efficiency. The BIF bears signatures of mixing of the contemporaneous clastic and chemical processes, as well as the changes accompanying diagenesis and metamorphism. The precipitation of Fe did not stop during the sedimentation in an island arc related tectonic setting. The BIF strongly lacks the signatures from hydrothermal input. The presence of positive cerium anomalies and the absence of positive europium anomalies in the shaly banded iron-formations imply that iron oxidation during BIF deposition took place in shallow waters rather than at depth, at oxic-anoxic boundary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Arora M, Naqvi SM (1993) Geochemistry of Archaean arenites formed by anoxic exogenic processes an example from Bababudan schist belt. India. J Geol Soc India 42(247):268

    Google Scholar 

  • Balakrishnan S, Hanson GN, Rajamani V (1999) U-Pb isotope study on zircons and sphenes from the Ramagiri area, southern India: evidence for accretionary origin of eastern Dharwar Craton during late Archean. J Geol 107:69–86

    Article  Google Scholar 

  • Bau M (1993) Effects of syn- and post-depositional processes on the rare earth element distribution in Precambrian iron formations. Eur J Mineral 5:257–267

    Article  Google Scholar 

  • Bau M, Dulski P (1996) Distribution of yttrium and rare-earth. Elements in the Penge and Kuruman iron-formations, Transvaal Supergroup, South Africa. Precamb Res 79:37–55

    Article  Google Scholar 

  • Bau M, Moller P (1993) Rare earth element systematics of the chemically precipitated iron formations and the evolution of the terrestrial atmosphere-hydrosphere lithosphere system. Geochim Cosmochim Acta 57:2239–2249

    Article  Google Scholar 

  • Brocks JJ, Logan GA, Buick R, Summons RE (1999) Archean molecular fossils and the early rise of eukaryotes. Science 285:1033–1036

    Article  Google Scholar 

  • Byrne RH, Kim KH (1990) Rare earth element scavenging in seawater. Geochim Cosmochim Acta 54:2645–2656

    Article  Google Scholar 

  • Canfield DE (2005) The early history of atmospheric oxygen. Annu Rev Planet Sci 33:1–36

    Article  Google Scholar 

  • Chadwick B, Vasudev VN, Ahmed N (1996) The Sandur schist belt and its adjacent plutonic rocks: implications for late Archaean crustal evolution in Karnataka. J Geol Soc India 47:37–57

  • Chakraborty KL, Majumder T (1986) Geological aspects of the banded iron formation of Bihar and Orissa. J Geol Soc India 28:71–91

    Google Scholar 

  • Clarke Anderson M (1984) Mineralogy of the rare earth elements. In: Henderson P (ed) Development in geochemistry 2—rare earth element geo-chemistry. Elsevier, Amsterdam, pp 34–60

    Google Scholar 

  • Cloud P (1973) Paleoecological significance of the banded iron formation. Econ Geol 68:1135–1143

    Article  Google Scholar 

  • Condie KC (1981) Archaean greenstone belts. Elsevier, Amsterdam

    Google Scholar 

  • Condie KC (1993) Chemical composition and evolution of the upper continental crust: contrasting results from surface amples and shales. Chem Geol 104:1–37

    Article  Google Scholar 

  • Coppin F, Berger G, Bauer A, Castet S, Loubet M (2002) Sorption of Lanthanides on smectite and kaolinite. Chem Geol 182:57–67

    Article  Google Scholar 

  • Danielson A, Möller P, Dulski P (1992) The europium anomalies in banded iron formations and the thermal history of the oceanic crust. Chem Geol 97:89–100

    Article  Google Scholar 

  • De Baar HJW (1991) On cerium anomalies in the Sargasso Sea. Geochim Cosmochim Acta 55:2981–2983

    Article  Google Scholar 

  • De Baar HJW, Bacon MP, Brewer PG (1985) Rare earth elements in the Pacific and Atlantic Oceans. Geochim Cosmochim Acta 49:1943–1959

    Article  Google Scholar 

  • DeBaar HJW, German CR, Elderfield H, van Gaans P (1988) Rare earth element distributions in anoxic waters f the Cariaco trench. Geochim Cosmochim Acta 52:1203–1219

    Article  Google Scholar 

  • Derry LA, Jacobsen SB (1990) The chemical evolution of Precambrian seawater: evidence from REEs in banded iron formations. Geochim Cosmochim Acta 54:2965–2977

    Article  Google Scholar 

  • Devraju TC, Laajoki K (1986) Mineralogy and mineral chemistry of the manganese poor and mangniferous iron formations from the high grade metamorphic terrain of southern Karnataka, India. J Geol Soc India 28:134–164

    Google Scholar 

  • Drever JL (1974) Geochemical model for the origin of Precambrian banded iron formations. Geol Soc Am Bull 85:1099–1106

    Article  Google Scholar 

  • Dutta RK, Acharya R, Nair GCA, Chintalapudi SN, Chakravortty V, Reddy AVR, Manohar SB (2005) Application of k0-based INAA method in the studies of rare earth and other elements in manganese nodules from Indian ocean. J Nucl Radiochem Sci 6:139–143

    Article  Google Scholar 

  • Dymek RF, Klein C (1988) Chemistry, petrology and origin of banded iron formation lithologies from the 3800 Ma Isua supracrustal belt, West Greenland. Precamb Res 39:247–302

    Article  Google Scholar 

  • Elderfield H, Greaves MJ (1982) The rare earth elements in seawater. Nature 296:214–219

    Article  Google Scholar 

  • Elderfield H, Hawkeswirth CJ, Greaves MJ, Calvert SE (1981) Rare earth element geochemistry of oceanic ferromanganese nodules and associated sediments. Geochim Cosmochim Acta 45:513–528

    Article  Google Scholar 

  • Eugester HP, Chou IM (1973) Depositional environments of Precambrian banded iron formations. Econ Geol 68:1144–1168

    Article  Google Scholar 

  • Ewers WE, Morris RC (1981) Studies on the Dales Gorge member of the Brockman Iron formation. Western Australia. Econ Geol 77:1929–1953

    Article  Google Scholar 

  • Fryer BJ (1977) Rare earth evidence in iron formations for changing Precambrian oxidation states. Geochim Cosmochim Acta 41:361–367

    Article  Google Scholar 

  • Fryer BJ (1983) Rare earth elements in iron formations. In: Trendall AF, Morris RC (eds) Iron formation: facts and problems. Elsevier, Amsterdam, p 358

    Google Scholar 

  • Fryer BJ, Fyfe WS, Kerrich R (1979) Archaean volcanogenic oceans. Chem Geol 24:25–33

    Article  Google Scholar 

  • Garrels RM, Perry EA Jr, Mackenzie FT (1973) Genesis of Precambrian iron-formations and the development of atmospheric oxygen. Econ Geol 68:1173–1179

    Article  Google Scholar 

  • German CR, Elderfield H (1990) Application of the Ce anomaly as a paleoredox indicator: the ground rules. Paleoceanography 5:823–833

    Article  Google Scholar 

  • German CR, Holliday BP, Elderfield H (1991) Redox cycling of rare earth elements in the suboxic zone of the Black Sea. Geochim Cosmochim Acta 55:3553–3558

    Article  Google Scholar 

  • Giritharan TS, Rajamani V (1998) Geochemistry of the metavolcanics of the Hutti-Maski schist belt, south India: implications to gold metallogeny in the eastern Dharwar Craton. J Geol Soc India 51:583–594

    Google Scholar 

  • Goldberg ED, Koide M, Schmitt RA, Smith RH (1963) Rare earth distributions in the marine environment. J Geophys Res 68:4209–4217

    Article  Google Scholar 

  • Goldstein SJ, Jacobsen SB (1988) Rare earth elements in river waters. Earth Planet Sci Lett 89:35–47

    Article  Google Scholar 

  • Goodwin AM (1991) Precambrian geology. Academic Press, New York, p 666

    Google Scholar 

  • Goodwin AM, Thode HG, Chau CL, Karkhansis SN (1985) Chemostratigraphy and origin of the late Archaean siderite-pyrite rich Helen Iron Formation, Michipicoten belt. Can J Earth Sci 22:72–84

    Article  Google Scholar 

  • Gross GA (1980) A classification of iron formations based on depositional environments. Can Mineral 18:215–222

    Google Scholar 

  • Gross GA (1991) Genetic concepts for iron-formation and associated metalliferous sediments. Econ Geol Monogr 8:51–88

    Google Scholar 

  • Holland DH (1973) The oceans: a possible source of iron in iron formations. Econ Geol 68:1169–1172

    Article  Google Scholar 

  • Jacobsen SB, Pimental-Klose MR (1988) A Nd isotopic study of the Hamersley and Michipicoten banded iron formations: the source of REE and Fe in Archaean oceans. Earth Planet Sci Lett 87:29–44

    Article  Google Scholar 

  • Kasting JF (1987) Theoretical constraints on oxygen and carbondioxide concentrations in the Precambrian atmosphere. Precamb Res 24:205–229

    Article  Google Scholar 

  • Kasting JF (1993) Earth’s early atmosphere. Science 259:920–926

  • Khan RMK, Naqvi SM (1996) Geology, geochemistry and genesis of BIF of Kushtagi Schist Belt, Archaean Dharwar Craton, India. Mineral Deposita 31:123–133

    Article  Google Scholar 

  • Khan RMK, Govil PK, Naqvi SM (1992) Geochemistry and genesis of banded iron formation from Kudremukh schist belt, Karnataka nucleus, India. J Geol Soc Ind 40:311–328

    Google Scholar 

  • Klein C, Beukes NJ (1993) Sedimentology and geochemistry of the glacigenic late Proterozoic Raptian iron-formation in Canada. Econ Geol 88:542–565

  • Klein C, Ladeira AE (2000) Geochemistry and petrology of some proterozoic banded iron-formations of the Quadrilátero Ferrífero, Minas Gerais, Brazil. Econ Geol 95:405–428

    Article  Google Scholar 

  • Klein C, Ladeira AE (2002) Petrography and geochemistry of the least altered banded iron-formation of the Archean Carajás formation, Northern Brazil. Econ Geol 97:643–651

    Google Scholar 

  • Knoll AH (2003) The geological consequences of evolution. Geobiology 1:3–14

    Google Scholar 

  • LaBerge GL (1988) Possible biological origin of Precambrian iron-formations. Econ Geol 68:1098–1109

  • Liu YG, Schmitt RA (1990) Cerium anomalies in western Indian Ocean Cenozoic carbonates, Leg 115. Proc Ocean Drilling Prog Sci Res 115:709–714

    Google Scholar 

  • Liu YG, Miah MRU, Schmitt RA (1988) Cerium, a chemical tracer for paleo-oceanic redox conditions. Geochem Cosmochim Acta 5:1361–1371

    Article  Google Scholar 

  • McLeod KG, Irving AJ (1996) Correlation of cerium anomalies with indicators of paleoenvironment. J Sediment Res 66(5):948–955

  • Majumder T, Whitley JE, Chakraborty KL (1984) Rare earth elements in the Indian banded iron formation. Chem Geol 45(3):203–211

    Article  Google Scholar 

  • Manikyamba C, Naqvi SM (1995) Geochemistry of Fe–Mn formations of the Archaean Sandur schist belt, India–mixing of clastic and chemical processes at a shallow shelf. Precamb Res 72:69–95

    Article  Google Scholar 

  • Manikyamba C, Balaram V, Naqvi SM (1993) Geochemical signatures of polygenetic origin of a banded iron formation (BIF) of the Archaean Sandur greenstone belt (Schist belt), Karnataka nucleus, India. Precamb Res 61:137–164

    Article  Google Scholar 

  • Manikyamba C, Naqvi SM, Moeen S, Gnaneshwar Rao T, Balram V, Ramesh SL, Reddy GLN (1997) Compositional heterogeneties of greywackes from late Archaen Sandur belt: implications for active plate margin processes. Precamb Res 84:117–138

  • Marchig V, Gundlach H, Moller P, Schley F (1982) Some geochemical indicators for discrimination between diagenetic and hydrothermal metalliferous sediments. Marine Geol 50:241–256

    Article  Google Scholar 

  • McLennan SB (1989) Rare earth elements in sedimentary rocks Influence of provenance and sedimentary processes. In: Lipin BR, McKay GA (Eds.) Geochemistry and mineralogy of the rare earth elements. Miner Soc Am, Washington, pp. 169–200

  • Michard A, Alberede F (1986) The REE content of some hydrothermal fluids. Chem Geol 55:51–60

    Article  Google Scholar 

  • Michard A, Michard G, Stoben D, Stoffers P, Cheminee JL, Binard N (1993) Submarine thermal springs associated with young volcanoes: the Teathitia Vents, Society Islands, Pacific Ocean. Geochim Cosmochim Acta 57:4977–4986

    Article  Google Scholar 

  • Middelburg JJ, Weijden CHVD, Woittiez JRW (1988) Chemical processes affecting the mobility of major, minor and trace elements during weathering of granitic rocks. Chem Geol 68:253–273

    Article  Google Scholar 

  • Miller RG, O’Nions RK (1985) Sources of Precambrian chemical and clastic sediments. Nature 314:325–330

    Article  Google Scholar 

  • Mishra Meenal, Rajamani V (1999) Significance of the Archaean bimodal volcanics from the Ramagiri schist belt in the formation of eastern Dharwar Craton. J Geol Soc India 54:563–583

    Google Scholar 

  • Mishra Meenal, Rajamani V (2003) Geochemistry of the Archaean Metasedimentary rocks from the Ramagiri Schist Belt, Eastern Dharwar Craton, India: implications to Crustal evolution. J Geol Soc India 62:717–738

    Google Scholar 

  • Moffett JW (1990) Microbially mediated cerium oxidation in sea water. Nature 345:421–423

    Article  Google Scholar 

  • Naqvi SM, Venkatachala BS, Shukla Manoj, Kumar B, Natarajan R, Sharma Mukund (1987) Silicified cyanobacteria from the cherts of Archaean Sandur schist belt, Karnataka, India. J Geol Soc India 29:535–539

    Google Scholar 

  • Nealson KH, Myers CR (1990) Iron reduction by bacteria: a potential role in the genesis of banded iron formation. Am J Sci 290A:35–45

    Google Scholar 

  • Nesbitt HW (1979) Mobility and fractionation of rare earth elements during weathering of a granodiorite. Nature 279:206–210

    Article  Google Scholar 

  • Pattan NJ, Pearce NJG, Mislankar PG (2005) Constraints in using Cerium-anomaly of bulk sediments as an indicator of paleo bottom water redox environment: a case study from the Central Indian Ocean Basin. Chem Geol 221:260–278

    Article  Google Scholar 

  • Piedgras DJ, Wasserburg GJ, Dasch EJ (1979) Strontium and Neodymium isotopes in the hotsprings on the East Pacific Rise and Guayamas Basin. Earth Planet Sci Lett 45:223–236

    Article  Google Scholar 

  • Piper DZ (1974) Rare earth elements in ferromanganese nodules and other marine phases. Geochim Cosmochim Acta 38:1007–1022

    Article  Google Scholar 

  • Rao TG (1992) Geochemistry and genesis of Banded Iron Formation (BIF) from the Central part of the Chitradurga schist belt, Karnataka. Ph.D. Thesis, Osmania University, Hyderabad, p 350

  • Rao TG, Naqvi SM (1995) Geochemistry, depositional environment and tectonic setting of the BIF’s of the Late Archaean Chitradurga Schist Belt, India. Chem Geol 121:217–243

    Article  Google Scholar 

  • Rosing MT, Frei R (2004) U-rich Archaean sea floor sediments from Greenland indication of 3700 Ma oxygenic photosynthesis. Earth Planet Sci Lett 217:237–244

    Article  Google Scholar 

  • Ruhlin DE, Owen RM (1986) The rare earth element geochemistry of hydrothermal sediments from the East Pacific Rise: examination of a sea water scavenging mechanism. Geochim Cosmochim Acta 49:2545–2560

    Google Scholar 

  • Shapiro L, Brannock WW (1962) Rapid analyses of silicate, carbonate and phosphate rocks. US Geol Surv Bull 48:49–55

    Google Scholar 

  • Shimizu H, Umemoto N, Masuda A, Appel PWU (1990) Sources of iron-formations in the Archaean Isua and Malene supracrustals, West Greenland: evidence from La–Ce and Sm–Nd isotopic data and REE abundances. Geochim Cosmochim Acta 54:1147–1154

    Article  Google Scholar 

  • Sholkovitz ER (1988) Rare earth elements in the sediments of the North Atlantic Ocean, Amazon delta, and East China Sea: reinterpretation of terrigenous input patterns to the oceans. Am J Sci 288:236–281

    Article  Google Scholar 

  • Sholkovitz ER, Schneider DL (1991) Cerium redox cycles and rare earth elements in the Sargasso Sea. Geocbim Cosmochim Acta 55:2737–2743

    Article  Google Scholar 

  • Siddaiah NS, Hanson GN, Rajamani V (1994) Rare Earth Element evidence for syngenetic origin of an Archaean stratiform Gold sulfide deposit, Kolar schist belt, South India. Econ Geol 89:1152–1566

    Article  Google Scholar 

  • Sun S-S, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders AD, Norry MJ (eds) Magmatism in the ocean basins. Geol. Soc Sp. Publ, London, pp 313–345

    Google Scholar 

  • Takahashi Y, Hirata T, Shimizu H, Ozaki T, Fortin D (2007) A rare earth element signature of bacteria in natural waters? Chem Geol 244:569–583

    Article  Google Scholar 

  • Taylor SR, McLennan SM (1985) The continental crust: its composition and evolution. Blackwell, Oxford, p 311

    Google Scholar 

  • Thomson J, Carpenter MSN, Colley S, Wilson TRS, Elderfield H, Kennedy H (1984) Metal accumulation rates in northwest Atlantic pelagic sediments. Geochim Cosmochim Acta 48:1935–1948

    Article  Google Scholar 

  • Tlig S, Steinberg M (1982) Distribution of rare earth elements (REE) in size fractions of recent sediments of the Indian Ocean. Chem Geol 37:317–333

    Article  Google Scholar 

  • Towe KM (1991) Aerobic carbon cycling and cerium oxidation: significance for Archean oxygen levels and banded iron-formation deposition. Glob Planet Change 5(1–2):113–123

  • Trendall AF, Morris RC (eds) (1983) Iron formation: facts and problems. Elsevier, Amsterdam, p 558

    Google Scholar 

  • Turner DR, Whitfield M (1979) Control of seawater composition. Nature 281:468–469

    Article  Google Scholar 

  • Venkatachala BS, Shukla M, Sharma M, Naqvi SM, Srinivasan R, Uday Raj B (1990) Archaean microbiota from the Donimalai formation, Dharwar Supergroup, India. Precamb Res 47:27–34

    Article  Google Scholar 

  • Walker JCG, Klein C, Schidlowski M, Schopf JW, Stevenson DJ, Walter MR (1983) Environmental evolution of the Archaean-early proterzoic earth. In: Schoff JW (ed) Earth’s earliest biosphere: its origin and evolution. Princeton Univ. Press, Princeton, pp 260–290

    Google Scholar 

  • Wilde P et al (1996) The whole-rock cerium anomaly: a potential indicator of eustatic sea-level changes in shales of the anoxic facies. Sediment Geol 101:43–53

    Article  Google Scholar 

  • Zachariah JK, Hanson GN, Rajamani V (1995) Post crystallization disturbances in the Nd and Pb Isotope systematics of metabasalts from the Ramagiri Schist Belt, south India. Geochim Cosmochim Acta 59:3189–3203

    Article  Google Scholar 

  • Zachariah JK, Mohanta MK, Rajamani V (1996) Accretionary evolution of the Ramagiri schist belt, eastern Dharwar Craton. J Geol Soc India 47:279–291

    Google Scholar 

  • Zachariah JK, Rajamani V, Hanson GN (1997) Geochemistry of metabasalts from the Ramagiri schist belt, south India: petrogenesis, source characteristics and implications to the origin of the eastern Dharwar Craton. Contrib Mineral Petrol 129:87–104

    Article  Google Scholar 

Download references

Acknowledgments

I thankfully acknowledge the financial help provided by Department of Science and Technology, New Delhi under DST Fast Track Project scheme No. HR/OY/A-16/98. Thanks are due to Prof. V. Rajamani, for allowing me to carry out geochemical analysis at Jawaharlal Nehru University, New Delhi. The critical review of the original paper by Prof. B.P. Singh, Banaras Hindu University, Varanasi has greatly helped me to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meenal Mishra.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mishra, M. Geochemistry of Late Archaean shaly BIF formed by oxic exogenic processes: an example from Ramagiri schist belt, Dharwar Craton, India. Chin. J. Geochem. 34, 362–378 (2015). https://doi.org/10.1007/s11631-015-0058-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11631-015-0058-2

Keywords

Navigation