Skip to main content
Log in

Mineralogy and geochemistry of Nb-, Ta-, Sn-, U-, Th-, and Zr-bearing granitic rocks from Abu Rusheid shear zones, South Eastern Desert, Egypt

  • Published:
Chinese Journal of Geochemistry Aims and scope Submit manuscript

Abstract

Granite-hosted, Nb-, Ta-, Sn-, U-, Th-, and Zr (Hf)-bearing mineralization from the Abu Rusheid shear zones occurs about 97 km southwest of the town of Marsa Alam, South Eastern Desert, Egypt. The SSE-trending brittle-ductile Abu Rusheid shear zones crosscut the peralkalic granitic gneisses and cataclastic to mylonitic rocks (mylonite, protomlyonite, and ultramylonite). The northern shear zone varies in width from 1 to 3 m with a strike length of >500 m, and the southern shear zone is 0.5 to 8 m wide and >1 km long. These shear zones locally host less altered lamprophyre and locally sheared granitic aplite-pegmatite dykes.

The rare-metal minerals, identified from the peralkalic granitic gneisses and cataclastic to mylonitic rocks are associated with muscovite, chlorite, quartz, fluorite, pyrite, magnetite, and rare biotite that are restricted to the Abu Rusheid shear zones; these are columbite-tantalite and pyrochlore (var. betafite) in the northern shear zone and ferrocolumbite in the southern shear zone. Cassiterite occurs as inclusions in the columbite-tantalite minerals. U- and Th-minerals (uraninite, thorite, uranothorite, ishikawaite, and cheralite) and Hf-rich zircon coexist. Magmatic (?) zircon contains numerous inclusions of rutile, fluorite, U-Th and REE minerals, such as uranothorite, cheralite, monazite, and xenotime. Compositional variations in Ta/(Ta+Nb) and Mn/(Mn+Fe) in columbite range from 0.07–0.42 and 0.04–0.33, respectively, and Hf contents in zircon from 1.92–6.46 of the two mineralized shear zones reflect the extreme degree of magmatic fractionation. Four samples of peralkalic granitic gneisses and cataclastic to mylonitic rocks from the southern shear zone have very low TiO2 (0.02 wt%–0.04 wt%), Sr [(15–20)×10−6], and Ba [(47–78)×10−6], with high Fe2O3 T (0.94 wt%–1.99 wt%), CaO (0.14 wt%–1.16 wt%), alkalis (9.2 wt%–10.1 wt%), Rb [(369–805)×10−6], Zr [(1033–2261)×10–6], Nb [(371–913)×10−6], U [(51–108)×10−6], Th [(36–110)×10−6], Ta [(38–108)×10−6], Pb [(39–364)×10−6], Zn [(21–424)×10−6], Y [(8–304)×10−6], Hf [(29–157)×10−6], and ΣREE [(64–304)×10−6], especially HREE [(46–167)×10−6]. Three samples from the northern shear zone also have very low TiO2 (0.03 wt%), Sr [(11–16)×10−6], and Ba [(38−47)×10−6], with high Fe2O3 T (1.97 wt%–2.91 wt%), CaO (0.49 wt%–1.01 wt%), alkalis (7.2 wt%–8.3 wt%), Rb [(932–978)×10−6], Zr [(1707–1953)×10−6], Nb [(853–981)×10−6], Ta [(100–112)×10−6], U [(120–752)×10−6], Th [(121–164)×10−6], Pb [(260–2198)×10−6], Zn [(483–1140)×10−6], Y [(8–304)×10−6], Hf [(67–106)×10−6], and ΣREE [(110–231)×10−6], especially HREE [(91–177)×10−6]. The very high Rb/Sr (57.5–88.9), and low Zr/Hf (16.9–25.6), Nb/Ta (7.7–9.8), and Th/U (0.21–1.01) are consistent with very fractionated fluorine-bearing granitic rocks that were altered and sheared. The field evidence, textural relations, and compositions of the ore minerals suggest that the main mineralizing event was magmatic (629+/−5 Ma, CHIME monazite), with later hydrothermal alteration and local remobilization of the high-field-strength elements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdel Monem A.A. and Hurley P.M. (1979) U-Pb dating of zircons from psammitic gneisses, Wadi Abu Rasheid-Wadi Sikait area, Egypt. In Evolution and Mineralization of the Arabian-Nubian Shield (ed. Tahoun S.A.) [M]. Pergamon Press, Oxford. 2, 165–170.

    Google Scholar 

  • Abdel Wahed A.A., Ammar S.E., Youssief T.F., and El-Husseiny M.O. (2002) Petrography, REE geochemistry and Rb-Sr isotopes study of Abu Tiyur granite, Central Eastern Desert, Egypt. [J]. Earth Sci. 16, 16–24.

    Google Scholar 

  • Abdel Warith A.M., Raslan M.F., and Ali M.A. (2007) Mineralogy and Radioactivity of Pegmatite Bodies from the Granitic Pluton of Gabal Um Taghir El-Tahatani Area, Central Eastern Desert, Egypt [C]. pp.24–41. The 10th Int. Min. Petrol & Metallurg. Eng. Conf. Mining.

  • Bau M. and Dulski P. (1995) Comparative study of yttrium and rare-earth element behaviors in fluorine-rich hydrothermal fluids [J]. Contrib. Mineral. Petrol. 119, 213–223.

    Article  Google Scholar 

  • Bowie S.H.U. and Horne J.E.T. (1953) Cheralite, a new mineral of the monazite group [J]. Mineral Mag. 30, 93–99.

    Article  Google Scholar 

  • Bowles J.F.W., Jobbins E.A., and Young B.R. (1980) A reexamination of cheralite [J]. Mineral Mag. 43, 885–888.

    Article  Google Scholar 

  • Bennett J.D. and Mosley P.N. (1987) Tiered-tectonics and evolution, Eastern Desert and Sinai, Egypt. In Current Research in African Earth Sciences (eds. Matheis G. and Schandelmeier H.) [M]. pp.79–82. Balkema, Rotterdam.

    Google Scholar 

  • Butler C.A., Holdsworth R.E., and Stachan R.A. (1995) Evidence for caledonian sinistral strike-slip motion and associated fault zone weakening, outer hebrides fault zone, NW Scotland [J]. Journal of Geological Society, London. 152, 743–746.

    Article  Google Scholar 

  • Braun I., Montel J.M., and Nicollet C. (1998) Electron microprobe dating of monazite from high-grade gneisses and pegmatites of the Kerala Khondalite Belt, southern India [J]. Chem. Geol. 146, 65–85.

    Article  Google Scholar 

  • Chakhmouradian A.R. and Mitchell R.H. (1998) Lueshite, pyrochlore and monazite-(Ce) from apatite-dolomite carbonatite, Lesnaya Varaka complex, Kola Peninsula, Russia [J]. Mineral. Mag. 62, 769–782.

    Article  Google Scholar 

  • Cocherie A. and Albarède F. (2001) An improved U-Th-Pb age calculation for electron microprobe dating of monazite [J]. Geochim. et Cosmochim. Acta. 65, 4509–4522.

    Article  Google Scholar 

  • Cocherie A., Legendre O., Peucat J.J., and Kouamelan A.N. (1998) Geochronology of polygenetic monazites constrained by in situ electron microprobe Th-U-total Pb determination: implications for lead behaviour in monazite [J]. Geochim. et Cosmochim. Acta. 62, 2475–2497.

    Article  Google Scholar 

  • Cocherie A., Be Mezeme E., Legendre O., Fanning C.M., Faure M., and Rossi P. (2005) Electron-microprobe dating as a tool for determining the closure of Th-U-Pb systems in migmatitic monazites [J]. Am. Mineral. 90, 607–618.

    Article  Google Scholar 

  • Crowley J.L. and Ghent E.D. (1999) An electron microprobe study of the Th-U-Pb systematics of metamorphosed monazite: the role of Pb diffusion versus overgrowth and recrystallization [J]. Chem. Geol. 157, 285–302.

    Article  Google Scholar 

  • Cuney M. and Friedrich M. (1987) Physicochemical and crystal-chemical controls on accessory mineral paragenesis in granitoids: implications for uranium metallogenesis [J]. Soc. fran. Minéral. Cristallog. Bull. 110(2–3), 235–248.

    Google Scholar 

  • Deer W.A., Howie R.A., and Zussman J. (1966) An Introduction to Rock Forming Minerals [M]. pp.517. Longmans, London.

    Google Scholar 

  • Dixon T.H. (1981) Age and chemical characteristics of some pre-Pan-African rocks in the Egyptian shield [J]. Precamb. Res. 14, 119–133.

    Article  Google Scholar 

  • El-Gaby S. (1975) Petrochemistry and geochemistry of some granites from Egypt [J]. J. Minerl. 124, 147–189.

    Google Scholar 

  • El-Gemmizi M.A. (1984) On the occurrence and genesis of mud zircon in the radioactive psammitic gneisses of Wadi Nugrus, Eastern Desert, Egypt [J]. J. Univ. Kawait (Sci.). 2, 285–294.

    Google Scholar 

  • El-Kammar A.M., Salman A.E., Shalaby M.H., and Mahdy A.I. (2001) Geochemical and genetical constraints on rare metals mineralization at the central Eastern Desert of Egypt [J]. Geochem. J. 35, 117–135.

    Google Scholar 

  • El-Manharawy M.S. (1977) Geochronological Investigation of Some Basement Rocks in Central Eastern Desert, Egypt Between lat. 25° and 26° N [D]. pp.216. Ph. D. Thesis, Cairo Univ., Egypt.

    Google Scholar 

  • El-Ramly M.F. and Akaad M.K. (1960) The basement complex in the Central Eastern Desert of Egypt between lat. 24° 30′ and 26°40′ N [J]. Geol. Surv. Pap. 8, 35.

    Google Scholar 

  • El-Shazly E.M. (1964) On the classification of the Precambrian and other rocks of magmatic affiliation in Egypt. XXII Inter [J]. Geol. Con. Proc. Sci. 10, 88–101.

    Google Scholar 

  • Förster H.J. (1999) The chemical composition of uraninite in variscan granites of the Erzgebirge, Germany [J]. Mineral. Mag. 63, 239–252.

    Article  Google Scholar 

  • Friedrich M.H., Cuney M., and Cregu G. (1989): Uranium enrichment processes in peraluminous magmatism [J]. Int. At. En. Ag. (IAEA)-TC-571/2, 11–35.

  • Friedrich M., Cuney M., and Poty B. (1987) Uranium geochemistry in peraluminous leucogranites [J]. Conf. Rept. Uranium. 3, 353–385.

    Google Scholar 

  • Fritz H., Dallmeyer D.R., Wallbrecher E., Loizenbauer J., Hoinkes G., Neumayr P., and Khudeir A.A. (2002) Neoproterozoic tectonothermal evolution of the Central Eastern Desert, Egypt: A slow velocity tectonic process of core complex exhumation [J]. J. Afr. Earth Sci. 34, 137–155.

    Article  Google Scholar 

  • Frondel C. (1958) Systematic mineralogy of uranium and thorium [J]. Geol. Surv. Am. Bull. 1064, 400.

    Google Scholar 

  • Frondel J.W. and Cuttito A. (1955) Glossary of uranium and thoriumbearing minerals [J]. Geol. Surv. Am. Bull. 5, 1009.

    Google Scholar 

  • Gascoyne M. (1982) Geochemistry of the actinides and their daughters. In Uranium Series Disequilibrium, Applications to Environmental Problems (eds. Ivanovich M. and Harmon R.S.) [M]. pp.33-55.

  • Greiling R.O., Kröner A., El-Ramly M.F., and Rashwan A.A. (1988) Structural relationships between the southern and central parts of the Eastern Desert of Egypt: Details of a fold and thrust belt. In The Pan-African Belt of Northeast Africa and Adjacent Areas [M]. pp.121–146. Vieweg, Wiesbaden.

    Google Scholar 

  • Greiling R.O., El-Ramly M.F., Rashwan A.A., and Kamal El-Din G.M. (1993) Towards a comprehensive structural synthesis of the (proterozoic) Arabian Nubian Shield in Egypt. In Geosci. Res. Northeast Afr. Balkema, Rotterdam (eds. Thorweihe U. and H. Schandelmeie H.) [M]. pp.15–19.

  • Hashad A.H. (1980) Present status of geochronological data on the Egyptian basement complex [J]. Institu. Appl. Geol. Bull. 4, 31–46.

    Google Scholar 

  • Hanson S.L., Simons W.B., Falster A.U., Foord E.E., and Lichte F.E. (1999) Proposed nomenclature for samarskite-group minerals: new data on Ishikawaite and calciosamarskite [J]. Mineral. Mag. 63, 27–63.

    Article  Google Scholar 

  • Hanson G.N. (1978) Application of trace elements to the petrogenesis of igneous rocks of granitic composition [J]. Earth Planetary Science Letter. 39, 26–43.

    Article  Google Scholar 

  • Hassan M.A. (1973) Geology and geochemistry of radioactive columbite-bearing psammitic gneiss of Wadi Abu Rusheid. South Eastern Desert, Egypt [J]. Annal. Geol. Surv. 3, 207.

    Google Scholar 

  • Hassan M.A. (1964) Geology and Petrographical Studies of the Radioactive Minerals and Rocks in Wadi Sikait-Wadi El Gemal Area, Eastern Desert, U.A.R.M. Sc [D]. pp.165. Thesis, Cairo Univ.

  • Hassan M.A. and Hashad A.H. (1990) Precambrian of Egypt. The anorogenic alkalic rocks, South Eastern Desert, Egypt [J]. Annal. Geol. Surv. Egypt. 9, 81–101.

    Google Scholar 

  • Hilmy M.E., El-Bayoumi R.M., and Eid A.S. (1990) Geology, geochemistry and mineralization of the psammitic gneiss of the Wadi Abu Rusheid, Eastern Desert, Egypt [J]. J. Afr. Earth Sci. 11, 197–205.

    Article  Google Scholar 

  • Hume W.F. (1935) Geology of Egypt. Vol. II, Part II. The Later Plutonic and Intrusive Rocks. Geol. Surv. Egypt [M]. pp. 301–688. Government Press, Cairo.

    Google Scholar 

  • Humphris S.E. (1984) The mobility of the REE in the crust. In REE Geochemistry (ed. Henderson P.) [M]. pp.317–342. Elsevier, Amsterdam.

    Google Scholar 

  • Hussein H.A. (1978) Lecture Course in Nuclear Geology [M]. pp.101. Internal report in Nuclear Materials Authority, Egypt.

    Google Scholar 

  • Hussein A.A., Ali M.M., and El-Ramly M.F. (1982) A proposed new classification of the granites of Egypt [J]. J. Vol. Geo. Res. 14, 187–198.

    Article  Google Scholar 

  • Ibrahim I., Saleh G.M., Amer T., Mahmoud F., Abu El Hassan A., Ali M.A., Azab M.S., Rashed M., Khaleal F., and Mahmoud M. (2004) Uranium and Associated Rare Metals Potentialities of Abu Rusheid Brecciated Shear Zone II, South Eastern Desert, Egypt [M]. pp.182. Nuclear Materials Authority, Cairo, Int. Rep.

  • Ibrahim I., El-Tokhi M.M., Saleh G.M., and Rashed M.A. (2006) Lamprophyres-bearing-REEs, South Eastern Desert, Egypt [C]. The 7th Int. Conf. Geoch. Alexandria Univ. (in press)

  • Ibrahim I., Saleh G.M., Hassan M.A., El-Tokhi M.M., and Rashed M.A. (2007a) Geochemistry of Lamprophyres-bearing Uranium Mineralization, Abu Rusheid Area, South Eastern Desert, Egypt [C]. pp.41–55. The 10th Int. Min. Petr. & Metal. Eng. Conf. Mining.

  • Ibrahim I., Saleh G.M. and Rashed M.A. (2007b) Base Metal Mineralization in Lamprophyre Dyke at Abu Rusheid Area, South Eastern Desert, Egypt [C]. pp.31–40. The 10th Int. Min. Petrol. & Metal. Eng. Conf. Mining.

  • Irber W. (1999) The lanthanide tetrad effect and its correlation with K/Rb, Eu/Eu*, Sr/Eu, Y/Ho, and Zr/Hf of evolving peraluminous granite suites [J]. Geochim. et Cosmochim. Acta. 63, 489–508.

    Article  Google Scholar 

  • Jefferies N.L. (1984) The distribution of the rare earth elements within the Carnmenetlis Pluton, Cornwall [J]. Mineral. Mag. 49, 495–504.

    Article  Google Scholar 

  • Keppler H. and Wyllie P.J. (1990) Role of fluids in transport and fractionation of uranium and thorium in magmatic provinces [J]. Nature. 348, 531–533.

    Article  Google Scholar 

  • Langmuir D. (1978) Uranium solution-mineral equilibria at low temperatures with applications to sedimentary ore deposits [J]. Geochim. et Cosmochim. Acta. 42, 547–569.

    Article  Google Scholar 

  • Linthout K. (2007) Tripartite division of the system 2REEPO4-CaTh(PO4)2-2ThSiO4, discreditation of brabantite, and recognition of cheralite as the name for members dominated by CaTh(PO4)2 [J]. The Can. Mineral. 45, 503–508.

    Article  Google Scholar 

  • Longerich H.P. (1995) Analysis of pressed powder pellets of geological samples using wavelength-dispersive X-ray fluorescence spectrometry [J]. X-ray Spectrometry. 24, 123–136.

    Article  Google Scholar 

  • Ludwig K.R. (1999) Users Manual for ISOPLOT/EX, Version 2. A Geochronological Toolkit for Microsoft Excel [Z]. Berkeley Geochronology Center, Special Publication 1a.

  • McMillan R.H. (1978) Genetic aspects and classification of important Canadian uranium deposits. In Uranium Deposits. Their Mineralogy and Origin (ed. Kimberly M.M.) [M]. Mineral. Assoc. Can., Short-Course. Handbook. 3, 187–204.

  • Mineyev D.A. (1963) Geochemical differentiation of the rare earth geochemistry [J]. USSR. 12, 1129–1149.

    Google Scholar 

  • Moghazi A.M., Hassanen M.A., Mohamed F.H., and Ali S. (2004) Late Neoproterozoic strongly peraluminous leucogranites, South Eastern Desert, Egypt-petrogenesis and geodynamic significance [J]. Mineral. Petrol. 81, 19–41.

    Article  Google Scholar 

  • Moussa E.M.M., Stern R.J., Manton W.I., and Ali K.A. (2008) Shrimp zircon dating and Sm/Nd isotopic investigations of Neoproterozoic granitoids, Eastern Desert, Egypt [J]. Precamb. Res. 160, 341–356.

    Article  Google Scholar 

  • Pagel M. (1982) The mineralogy and geochemistry of uranium, thorium and rare-earth elements in two radioactive granites of the Vosges, France [J]. Mineral. Mag. 46, 149–161.

    Article  Google Scholar 

  • Parrish R.R. (1990) U-Pb dating of monazite and its application to geological problems [J]. Can. J. Earth Sci. 27, 1431–1450.

    Article  Google Scholar 

  • Pommier A., Cocherie A., and Legendre O. (2002) EPMA Dating User’s Manual: Age Calculation from Electron Probe Microanalyser Measurements of U-Th-Pb [Z]. BRGM Documents. 9p.

  • Raslan M.F. (2005) Mineralogy and Physical Upgrading of Abu Rusheid Radioactive Gneiss, South Eastern Desert, Egypt [C]. pp.27. The 9th Int. Min. Petrol. & Metal. Eng. Conf., Mining.

  • Raslan M.F. (2008) Occurrence of ishikawaite (uranium-rich Samarskite) in the mineralized Abu Rusheid gneiss, South Eastern Desert, Egypt [J]. International Geology Review. 50, 1132–1140.

    Article  Google Scholar 

  • Rogers J.J.W. and Adams J.S.S. (1969) Uranium. In Handbook of Geochemistry (ed. Wedepohl K.H.) [M]. New York, Springer-Verlag. 4, 92 B1–92C10.

    Google Scholar 

  • Sabet A.H., Tsogoev V.B., Bordonosov V.P., Shoblovsky R.G., and Kossa M. (1976) On the geologic structures, laws of localization and prospects of Abu Rusheid rare metals deposit [J]. Annl. Geol. Surv., Egypt. 7, 181–197.

    Google Scholar 

  • Saleh G.M. (1997) The Potentiality of Uranium Occurrences in Wadi Nugrus Area, South Eastern Desert, Egypt [D]. pp.171. Ph.D. Thesis, Manisora University.

  • Simmons W.B., Hanson S.L., and Falster A.U. (2006) Samarskite-(Yb) A new species of the samarskite group from the Litle Pasty pegmatite, Jefferson County, Colorado [J]. Can. Mineral. 44, 1119–1125.

    Article  Google Scholar 

  • Steenfelt A. (1982) Uranium and selected trace elements in granites from the Calidonides of East Greenland [J]. Mineralogical Magazine. 46, 201–210.

    Article  Google Scholar 

  • Stern R.J. (1985) The Najd fault system, Saudi Arabia and Egypt: A late Precambrian rift-related transform system? [J]. Tectonics. 4, 497–511.

    Article  Google Scholar 

  • Stern R.J. and Hedge C.E. (1985) Gechronologic and isotopic contraints on Late Precambrain crustal evolution in the Eastern Desert in Egypt [J]. Am. J. Sci. 258, 97–127.

    Article  Google Scholar 

  • Takla M.A., Basta F.F., and Surour A.A. (1992) Petrology and Mineral Chemistry of Rodingites Associating the Pan-African Ultramafics of Sikait-Abu Rusheid Area, South Eastern Desert, Egypt [C]. pp.491–507. 1st Conf. Geol Arab. World., Cairo Univ., Egypt.

  • Takahashi Y., Yoshida H., Sato N., Hama K., Yusa Y., and Shimizu H. (2003) Reply to the comment by Monecke T, Kempe U., and Monecke J. on “W- and M-type tetrad effects in REE patterns for water-rock systems in the Tono uranium deposit, central Japan [J]. Chem. Geol. 202,1–2, 185–189.

    Article  Google Scholar 

  • Taylor S.R. and McLennan S.M. (1985) The Continental Crust: Its Composition and Evolution [M]. pp.312. Blackwell.

  • Townsend K.J., Miller C.F., D’Andrea J.L., Ayers J.C., Harrison T.M., and Coath C.D. (2000) Low temperature replacement of monazite in the Ireteba granite, southern Nevada: Geochronological implications [J]. Chem. Geol. 172, 95–112.

    Article  Google Scholar 

  • Vuorinen J. H. and Hålenius U. (2005) Nb-, Zr- and LREE-rich titanite from the Alnö alkaline complex: Crystal chemistry and its importance as a petrogenetic indicator [J]. Lithos. 83, 128–142.

    Article  Google Scholar 

  • Weyer S., Münker C., Rehkomper M., and Mezger K. (2002) Determination of ultra-low Nb, Ta, Zr and Hf concentrations and the chondritic Zr/Hf and Nb/Ta ratios by isotope dilution analyses with multiple collector ICP-MS [J] Chem. Geol. 187(3–4), 295–313.

    Article  Google Scholar 

  • Wallbrecher E., Fritz H., Khudeir A.A., and Farahad F. (1993) Kinematics of Panafrican thrusting and extension in Egypt. In Geosc. Res. (eds. Thorweihe U. and Schandelmeier H.) [M]. pp.27–30. NE Afr. Balkema, Rotterdam.

    Google Scholar 

  • Whittaker E.J. and Muntus R. (1970) Ionic radii for use in geochemistry [J]. Geochim. et Cosmochim. Acta. 34, 945.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Ali.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ali, M.A., Lentz, D.R. & Hall, D.C. Mineralogy and geochemistry of Nb-, Ta-, Sn-, U-, Th-, and Zr-bearing granitic rocks from Abu Rusheid shear zones, South Eastern Desert, Egypt. Chin. J. Geochem. 30, 226–247 (2011). https://doi.org/10.1007/s11631-011-0505-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11631-011-0505-7

Key words

Navigation