Skip to main content

Advertisement

Numerical Simulation of Nanofluid-Based Parallel Cooling Photovoltaic Thermal Collectors

  • Published:
Journal of Thermal Science Aims and scope Submit manuscript

Abstract

A novel hybrid cogeneration system based on a parallel-cooled photovoltaic/thermal (PV/T) module is presented in this paper. The temperature of the parallel-cooled PV/T module is more uniform due to the parallel cooling fluid of air mixed with water or nanofluids (SiO2, CuO, Ag, and Al2O3). The results show that the overall temperature of the PV cell in the parallel-cooled module is about 2 K lower than that in the single-cooled module, with a 9.01% improvement in thermal efficiency and a 0.09% enhancement in electrical efficiency. The PV/T module with nanofluid shows a significant improvement in thermal and electrical efficiency. The thermal and electrical efficiencies of the parallel-cooled PV/T module consisting of Al2O3 nanofluid and air are 89.21% and 9.84%, respectively. Compared with the non-nanofluid parallel cooling scheme, the cooling method consisting of 1 wt%, 3 wt%, or 5 wt% Al2O3 and air, the thermal efficiency of PV/T was improved by 5.47%, 5.30%, and 3.93%, respectively with the solar radiation of 800 W/m2 and the flow rate of 0.10 m/s, while the electrical efficiency was improved by 0.026%, 0.027%, and 0.034%, respectively. In addition, when the solar radiation is 1000 W/m2 with a flow rate of 0.025 m/s, the air-water parallel cooling PV/T module achieves a maximum exergy efficiency of 11.74%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abbreviations

CFD:

Computational fluid dynamics

EVA:

Ethylene-vinyl acetate

MAE:

Mean absolute error

PV/T:

Photovoltaic and thermal

RMSE:

Root mean square error

S2S:

Surface to surface

A :

area/m2

C p :

specific heat capacity/J·(kg·K)−1

G :

irradiation/W·m−2

g :

gravity acceleration/m·s−2

h :

heat transfer coefficient/W· (m2 ·K)−1

k :

conductivity/W·(m·K)−1

p :

pressure/N·m−2

q :

heat flux/W·m−2

S :

flow rate factor

T :

temperature/K

V :

fluid velocity/m·s−1

α :

absorptivity

β :

temperature coefficient/K−1

η :

efficiency

θ :

the tilt angle of setup/(°)

ρ :

density/kg·m−3

τ :

transmittance

φ :

volume fraction

Φ :

Absorber heat flux on plate

amb:

ambient

c:

collector

e:

electricity

f:

fluid medium

g:

glass cover

i:

inlet

l:

liquid

nf:

nanofluid

o:

outlet

p:

power

pv:

photovoltaic cell

ref:

reference

s:

solar

th:

thermal

w:

wall

References

  1. Chow T.T., Pei G., Fong K.F., Lin Z., Chan A.L.S., Ji J., Energy and exergy analysis of photovoltaic-thermal collector with and without glass cover. Applied Energy, 2009, 86: 310–316.

    Article  Google Scholar 

  2. Hu M., Guo C., Zhao B., Ao X., Suhendri, Cao J., Wang Q., Riffat S., Su Y., Pei G., A parametric study on the performance characteristics of an evacuated flat-plate photovoltaic/thermal (PV/T) collector. Renewable Energy, 2021, 167: 884–898.

    Article  Google Scholar 

  3. He W., Chow T.T., Ji J., Lu J., Pei G., Chan L.S., Hybrid photovoltaic and thermal solar-collector designed for natural circulation of water. Applied Energy, 2006, 83: 199–210.

    Article  Google Scholar 

  4. Ibrahim A., Othman M.Y., Ruslan M.H., Mat S., Sopian K., Recent advances in flat plate photovoltaic/thermal (PV/T) solar collectors. Renewable and Sustainable Energy Reviews, 2011, 15: 352–365.

    Article  Google Scholar 

  5. Tonui J.K., Tripanagnostopoulos Y., Improved PV/T solar collectors with heat extraction by forced or natural air circulation. Renewable Energy, 2007, 32: 623–637.

    Article  Google Scholar 

  6. Sopian K., Yigit K.S., Liu H.T., Kakac S., Veziroglu T.N., Performance analysis of photovoltaic thermal air heaters. Energy Conversion & Management, 1996, 37: 1657–1670.

    Article  Google Scholar 

  7. Dubey S., Solanki S.C., Tiwari A., Energy and exergy analysis of PV/T air collectors connected in series. Energy & Buildings, 2009, 41: 863–870.

    Article  Google Scholar 

  8. Vanhkeo K., Wang Y., Huang M., Du G., Experimental study on dryin performance of solar PV/T air collector. Journal of Yunnan Normal University (Natural Sciences Edition), 2019, 39: 6.

    Google Scholar 

  9. Liu P., Guan X., Mu Z., Cai K., Tang Y., Numerical simulation and experimental study of PVT system. Acta Energiae Solaris Sinica, 2010, 31: 999–1004.

    Google Scholar 

  10. Fudholi A., Sopian K., Yazdi M.H., Ruslan M.H., Ibrahim A., Kazem H.A., Performance analysis of photovoltaic thermal (PVT) water collectors. Energy Conversion & Management, 2014, 78: 641–651.

    Article  Google Scholar 

  11. Alzaabi A.A., Badawiyeh N.K., Hantoush H.O., Hamid A.K., Electrical/thermal performance of hybrid PV/T system in Sharjah, UAE. International Journal of Smart Grid and Clean Energy, 2014, 3: 385–389.

    Google Scholar 

  12. Jie J., Han J., Chow T.T., Hua Y., Lu J., Wei H., Wei S., Effect of fluid flow and packing factor on energy performance of a wall-mounted hybrid photovoltaic/water-heating collector system. Energy & Buildings, 2006, 38: 1380–1387.

    Article  Google Scholar 

  13. Zhang J., Tao H., Chen S., Numerical simulation for structural parameters of flat-plate solar collector. Solar Energy, 2015, 117: 192–202.

    Article  Google Scholar 

  14. Ghanbarpour M., Bitaraf Haghigi E., Khodabandeh R., Thermal properties and rheological behavior of water based Al2O3 nanofluid as a heat transfer fluid. Experimental Thermal and Fluid Science, 2014, 53: 227–235.

    Article  Google Scholar 

  15. Mahian O., Kianifar A., Kalogirou S.A., Pop I., Wongwises S., A review of the applications of nanofluids in solar energy. International Journal of Heat and Mass Transfer, 2013, 57: 582–594.

    Article  Google Scholar 

  16. Sarkar J., A critical review on convective heat transfer correlations of nanofluids. Renewable and Sustainable Energy Reviews, 2011, 15: 3271–3277.

    Article  Google Scholar 

  17. Teng T.-P., Hung Y.-H., Teng T.-C., Mo H.-E., Hsu H.-G., The effect of alumina/water nanofluid particle size on thermal conductivity. Applied Thermal Engineering, 2010, 30: 2213–2218.

    Article  Google Scholar 

  18. Jarimi H., Abu Bakar M.N., Othman M., Din M.H., Bi-fluid photovoltaic/thermal (PV/T) solar collector: Experimental validation of a 2-D theoretical model. Renewable Energy, 2016, 85: 1052–1067.

    Article  Google Scholar 

  19. Kamruzzaman M.D., Uyeh D.D., Jang I.K.J., Woo S.M., Ha Y.S., Drying characteristics and milling quality of parboiled Japonica rice under various drying conditions. Engineering in Agriculture, Environment and Food, 2017, 10: 292–297.

    Article  Google Scholar 

  20. Li H.L., Experimental study on drying process and control process of rice temperature change. Mater’s Dissertation. Heilongjiang, China: Bayi Agricultural University, 2019, June.

    Google Scholar 

  21. Khanjari Y., Pourfayaz F., Kasaeian A.B., Numerical investigation on using of nanofluid in a water-cooled photovoltaic thermal system. Energy Conversion and Management, 2016, 122: 263–278.

    Article  Google Scholar 

  22. Wanatasanapan V.V., Abdullah M.Z., Gunnasegaran P., Effect of TiO2-Al2O3 nanoparticle mixing ratio on the thermal conductivity, rheological properties, and dynamic viscosity of water-based hybrid nanofluid. Journal of Materials Research and Technology, 2020, 9: 13781–13792.

    Article  Google Scholar 

  23. Li C., Guan Y., Gao H., Jiang C., Li J., Yang R., Study on influence of nanofluids on heat transfer characteristic of deep-buried U-bend pipe. Acta Energiae Solaris Sinica, 2021, 42: 392–399.

    Google Scholar 

  24. Seyf H.R., Nikaaein B., Analysis of Brownian motion and particle size effects on the thermal behavior and cooling performance of microchannel heat sinks. International Journal of Thermal Sciences, 2012, 58: 36–44.

    Article  Google Scholar 

  25. Maïga S.E.B., Nguyen C.T., Galanis N., Roy G., Heat transfer behaviours of nanofluids in a uniformly heated tube. Superlattices and Microstructures, 2004, 35: 543–557.

    Article  ADS  Google Scholar 

  26. Bhattarai S., Oh J.-H., Euh S.-H., Krishna Kafle G., Hyun Kim D., Simulation and model validation of sheet and tube type photovoltaic thermal solar system and conventional solar collecting system in transient states. Solar Energy Materials and Solar Cells, 2012, 103: 184–193.

    Article  Google Scholar 

  27. Ćalasan M., Abdel Aleem S.H.E., Zobaa A.F., On the root mean square error (RMSE) calculation for parameter estimation of photovoltaic models: A novel exact analytical solution based on Lambert W function. Energy Conversion and Management, 2020, 210: 112716.

    Article  Google Scholar 

Download references

Acknowledgements

This research by the first two authors has been supported by the National Natural Science Foundation of China (Grant No. 52276007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiangjiang Wang.

Ethics declarations

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Qin, Y., Huo, S. et al. Numerical Simulation of Nanofluid-Based Parallel Cooling Photovoltaic Thermal Collectors. J. Therm. Sci. 32, 1644–1656 (2023). https://doi.org/10.1007/s11630-023-1741-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11630-023-1741-y

Keywords

Navigation