Skip to main content
Log in

Measuring Thermal Conductivity of an Individual Carbon Nanotube Using Raman Spectroscopy

  • Nano/Microscale Heat Conduction
  • Published:
Journal of Thermal Science Aims and scope Submit manuscript

Abstract

In this paper, a non-contact method based on Raman spectroscopy was used to measure the thermal conductivity of an individual single-walled carbon nanotube (SWCNT) and a multi-walled carbon nanotube (MWCNT). The effect of laser-induced heating on carbon nanotubes (CNTs) was considered. The local temperatures along the longitudinal direction of carbon nanotube were determined by Raman shift, combined with one-dimensional heat conduction model, and the thermal conductivity was finally obtained. The thermal conductivity of the SWCNT with a length of 25 μm and a diameter of 1.34 nm decreases as the temperature increases in the measuring temperature range (316 K–378 K). The corresponding thermal conductivities change from 1651 W/(m·K) to 2423 W/(m·K); the thermal conductivities of the MWCNT with 40 μm length and 9.2 nm diameter are within 1109–1700 W/(m·K) at 316 K–445 K. To further analyze the size effect on the thermal conductivity, molecular dynamics simulation has been carried out. The result shows that the thermal conductivity of an individual carbon nanotube increases with increasing nanotube length and eventually converges. This work is expected to provide some reference data for the studies of thermal properties of individual CNTs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Iijima S., Helical microtubules of graphitic carbon. Nature, 1991, 354(6348): 56–58.

    Article  ADS  Google Scholar 

  2. Zhang Y.F., Fan A.R., An M., et al., Thermal transport characteristics of supported carbon nanotube: Molecular dynamics simulation and theoretical analysis. International Journal of Heat and Mass Transfer, 2020, 159: 120111.

    Article  Google Scholar 

  3. Fan A.R., Hu Y.D., Zhang Y.F., et al., Preparation and water flow velocity measurement of a large diameter single-wall carbon nanotube. Nano Futures, 2021, 5(1): 015003.

    Article  ADS  Google Scholar 

  4. Kim P., Shi L., Majumdar A., et al., Thermal transport measurements of individual multiwalled nanotubes. Physical Review Letters, 2001, 87(21): 215502.

    Article  ADS  Google Scholar 

  5. Lu L., Yi W., Zhang D.L., 3 omega method for specific heat and thermal conductivity measurements. Review of Scientific Instruments, 2001, 72(7): 2996–3003.

    Article  ADS  Google Scholar 

  6. Fujii M., Zhang X., Xie H.Q., et al., Measuring the thermal conductivity of a single carbon nanotube. Physical Review Letters, 2005, 95(6): 65502.

    Article  ADS  Google Scholar 

  7. Li Q., Liu C., Wang X., et al., Measuring the thermal conductivity of individual carbon nanotubes by the Raman shift method. Nanotechnology, 2009, 20(14): 145702.

    Article  ADS  Google Scholar 

  8. Yue Y.A., Huang X.P., Wang X.W., Thermal transport in multiwall carbon nanotube buckypapers. Physics Letters A, 2010, 374(40): 4144–4151.

    Article  ADS  Google Scholar 

  9. Yue Y.A., Eres G, Wang X.W., et al., Characterization of thermal transport in micro/nanoscale wires by steady-state electro-Raman-thermal technique. Applied Physics A, 2009, 97(1): 19–23.

    Article  Google Scholar 

  10. Li M., Yue Y.A., Raman-based steady-state thermal characterization of multiwall carbon nanotube bundle and buckypaper. Journal of Nanoscience and Nanotechnology, 2015, 15(4): 3004–3010.

    Article  Google Scholar 

  11. Liu J., Wang H., Ma W., et al., Simultaneous measurement of thermal conductivity and thermal contact resistance of individual carbon fibers using Raman spectroscopy. Review of Scientific Instruments, 2013, 84(4): 44901.

    Article  Google Scholar 

  12. Zheng L.X., O’Connell M.J., Doorn S.K., et al., Ultralong single-wall carbon nanotubes. Nature Materials, 2004, 3(10): 673–676.

    Article  ADS  Google Scholar 

  13. Rao A.M., Richter E., Bandow S., et al., Diameter-selective Raman scattering from vibrational modes in carbon nanotubes. Science, 1997, 275(5297): 187–191.

    Article  Google Scholar 

  14. Araujo P.T., Maciel I.O., Pesce P.B.C., et al., Nature of the constant factor in the relation between radial breathing mode frequency and tube diameter for single-wall carbon nanotubes. Physical Review B, 2008, 24(77): 241403.

    Article  ADS  Google Scholar 

  15. Zhang Y., Xie L., Zhang J., et al., Temperature coefficients of Raman frequency of individual single-walled carbon nanotubes. The Journal of Physical Chemistry C, 2007, 111(38): 14031–14034.

    Article  Google Scholar 

  16. Zhang Y., Son H., Zhang J., et al., Laser-heating effect on Raman spectra of individual suspended single-walled carbon nanotubes. The Journal of Physical Chemistry C, 2007, 111(5): 1988–1992.

    Article  Google Scholar 

  17. Zhang X., Yang F., Zhao D., et al., Temperature dependent Raman spectra of isolated suspended single-walled carbon nanotubes. Nanoscale, 2014, 6(8): 3949–3953.

    Article  ADS  Google Scholar 

  18. Kataura H., Kumazawa Y., Maniwa Y., et al., Optical properties of single-wall carbon nanotubes. Syntheticmetals, 1999, 103(1): 2555–2558.

    Google Scholar 

  19. Nasir Imtani A., Thermal conductivity for single-walled carbon nanotubes from Einstein relation in molecular dynamics. Journal of Physics and Chemistry of Solids, 2013, 74(11): 1599–1603.

    Article  ADS  Google Scholar 

  20. Stuart S.J., Tutein A.B., Harrison J.A., A reactive potential for hydrocarbons with intermolecular interactions. The Journal of Chemical Physics, 2000, 112(14): 6472–6486.

    Article  ADS  Google Scholar 

  21. Choi T.Y., Poulikakos D., Tharian J., et al., Measurement of thermal conductivity of individual multiwalled carbon nanotubes by the 3-ω method. Applied Physics Letters, 2005, 87(1): 13108.

    Article  Google Scholar 

  22. Lukes J.R., Hongliang Z., Thermal conductivity of individual single-wall carbon nanotubes. Journal of Heat Transfer, 2007, 129(6): 705–716.

    Article  Google Scholar 

  23. Maruyama S., A molecular dynamics simulation of heat conduction of a finite length single-walled carbon nanotube. Microscal Thermophysical Engineering, 2003, 7(1): 41–50.

    Article  Google Scholar 

  24. Hou Q.W., Cao B.Y., Guo Z.Y., Molecular dynamics study on thermal conductivity of carbon nanotubes. Heat Transfer-Asian Research, 2010, 39(7): 455–459.

    Google Scholar 

  25. Alaghemandi M., Algaer E., Böhm M.C., et al., The thermal conductivity and thermal rectification of carbon nanotubes studied using reverse non-equilibrium molecular dynamics simulations. Nanotechnology, 2009, 20(11): 115704.

    Article  ADS  Google Scholar 

  26. Wang Z.L., Liang J.G., Tang D.W., Experimental and theoretical study of the length-dependent thermal conductivity of individual single-walled carbon nanotubes. Acta Physica Sinica, 2008, 57(6): 3391–3396.

    Article  Google Scholar 

  27. Wang H.D., Zhang X., A method for simultaneously measuring the laser absorptivity and thermal conductivity of a single micro/nano wire. Patent CN102944573B, 2014. (in Chinese)

Download references

Acknowledgments

Thanks for the support provided by the Beijing Natural Science Foundation (No. 3192022), and National Natural Science Foundation of China (No. 51876007 and No. 52176054).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Daili Feng or Yanhui Feng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, P., Feng, D., Feng, Y. et al. Measuring Thermal Conductivity of an Individual Carbon Nanotube Using Raman Spectroscopy. J. Therm. Sci. 31, 1016–1022 (2022). https://doi.org/10.1007/s11630-022-1625-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11630-022-1625-6

Keywords

Navigation