Skip to main content
Log in

Effect of Guide Vane on Pressure Loss and Heat Transfer Characteristics of Supercritical CO2 in U-Shaped Channel

  • Published:
Journal of Thermal Science Aims and scope Submit manuscript

Abstract

U-shaped channel is a common unit structure in heat exchanger. The pressure loss and heat transfer characteristics of U-shaped channel have important influence on the comprehensive performance of heat exchanger. In this paper, combined with the thermo-physical property of supercritical CO2 (SCO2), the influence of the guide vanes on the pressure loss and heat transfer characteristics of SCO2 in U-shaped channel was studied numerically. The four different guide vanes included integral guide vane, two-stage symmetric guide vane, two-stage asymmetric guide vane and discrete guide vane. CO2 Real Gas Property file (RGP) was imported into ANSYS CFX commercial software for calculation, and the turbulence model was SST kω. At the same time, the influence of different inlet Reynolds numbers and heating conditions of channel wall were also studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

c p :

specific heat capacity at constant pressure/J·kg−1·K−1

f :

loss coefficient

h :

heat transfer coefficient/W·m−2·K−1

Nu :

Nusselt number

P :

pressure/MPa

Pr :

Prandtl number

q :

heat flux/W·m−2

Re :

Reynolds number

T :

temperature/K

t :

time/s

u :

velocity/m·s−1

x, y, z :

Cartesian coordinates/m

λ :

thermal conductivity/W·m−1·K−1

μ :

dynamic viscosity/kg-·m−1·s−1

ρ :

density/kg·m−3

Ω :

turbulence frequency/s−1

b:

bulk fluid

in:

inlet of the geometry

out:

outlet of the geometry

w:

wall

References

  1. Cabeza L.F., Gracia A.D., Fernández A.I., et al., Supercritical CO2 as heat transfer fluid: A review. Applied Thermal Engineering, 2017, 125: 799–810.

    Article  Google Scholar 

  2. Li M.J., Zhu H.H., Guo J.Q., et al., The development technology and applications of supercritical CO2 power cycle in nuclear energy, solar energy and other energy industries. Applied Thermal Engineering, 2017, 126: 255–275.

    Article  Google Scholar 

  3. Luu M.T., Milani D., Mcnaughton R., et al., Advanced control strategies for dynamic operation of a solar-assisted recompression supercritical CO2 Brayton power cycle. Applied Thermal Engineering, 2018, 136: 682–700.

    Article  Google Scholar 

  4. Zhang G.W., Hu P., Chen L.X., et al., Experimental and simulation investigation on heat transfer characteristics of in-tube supercritical CO2 cooling flow. Applied Thermal Engineering, 2018, 143: 1101–1113.

    Article  Google Scholar 

  5. Dang C.B., Hihara E., In-tube cooling heat transfer of supercritical carbon dioxide. Part 1. Experimental measurement. International Journal of Refrigeration, 2004, 27(7): 736–747.

    Article  Google Scholar 

  6. Bovard S., Abdi M., Nikou M., et al., Numerical investigation of heat transfer in supercritical CO2 and water turbulent flow in circular tubes. Journal of Supercritical Fluids, 2017, 119: 88–103.

    Article  Google Scholar 

  7. Lei X.X., Zhang J., Gou L.T., et al., Experimental study on convection heat transfer of supercritical CO2 in small upward channels. Energy, 2019, 176: 119–130.

    Article  Google Scholar 

  8. Lei X.X., Li H., Dinh N.T., et al., A study of heat transfer scaling of supercritical pressure water in horizontal tubes. International Journal of Heat & Mass Transfer, 2017, 114: 923–933.

    Article  Google Scholar 

  9. Xu R.N., Feng L., Jiang P.X., Experimental research on the turbulent convection heat transfer of supercritical pressure CO2 in a serpentine vertical mini tube. International Journal of Heat and Mass Transfer, 2015, 91: 552–561.

    Article  Google Scholar 

  10. Xu J., Yang C., Wei Z., et al., Turbulent convective heat transfer of CO2 in a helical tube at near-critical pressure. International Journal of Heat & Mass Transfer, 2015, 80: 748–758.

    Article  Google Scholar 

  11. Qiu G.D., Sun J., Nie L.J., et al., Theoretical study on heat transfer characteristics of a finned tube used in the collector/evaporator under solar radiation. Applied Thermal Engineering, 2020, 165: 114564.

    Article  Google Scholar 

  12. Qiu G., Sun J., Ma Y., et al., Theoretical study on the heat transfer characteristics of a plain fin in the finned-tube evaporator assisted by solar energy. International Journal of Heat and Mass Transfer, 2018, 127: 847–855.

    Article  Google Scholar 

  13. Fu Y., Wen J., Tao Z., et al., Experimental research on convective heat transfer of supercritical hydrocarbon fuel flowing through U-turn tubes. Applied Thermal Engineering, 2017, 116: 43–55.

    Article  Google Scholar 

  14. Zhang S.J., Xu X.X., Liu C., et al., The heat transfer of supercritical CO2 in helically coiled tube: Trade-off between curvature and buoyancy effect. Energy, 2019, 176: 765–777.

    Article  Google Scholar 

  15. Ciofalo M., Arini A., Liberto M.D., On the influence of gravitational and centrifugal buoyancy on laminar flow and heat transfer in curved pipes and coils. International Journal of Heat and Mass Transfer, 2015, 82(3): 123–134.

    Article  Google Scholar 

  16. Liu X.X., Xu X.X., Liu C., et al., Numerical study of the effect of buoyancy force and centrifugal force on heat transfer characteristics of supercritical CO2 in helically coiled tube at various inclination angles. Applied Thermal Engineering, 2017, 116: 500–515.

    Article  Google Scholar 

  17. Tae H.K., Jin G.K., Moo H.K., et al., Experimental investigation on validity of buoyancy parameters to heat transfer of CO2 at supercritical pressures in a horizontal tube. Experimental Thermal and Fluid Science, 2018, 92: 222–230.

    Article  Google Scholar 

  18. Lei J., Su P.F., Xie G.N., et al., The effect of a hub turning vane on turbulent flow and heat transfer in a four-pass channel at high rotation numbers. International Journal of Heat and Mass Transfer, 2016, 92: 578–588.

    Article  Google Scholar 

  19. Walisch T., Müller M., Dörfler W., et al., The heat transfer to supercritical carbon dioxide in tubes with mixed convection. Process Technology Proceedings, 1996, 12: 199–204.

    Article  Google Scholar 

  20. Kraan M., Peeters M., Cid M., et al., The influence of variable physical properties and buoyancy on heat exchanger design for near- and supercritical conditions. Journal of Supercritical Fluids, 2005, 34(1): 99–105.

    Article  Google Scholar 

  21. Lemmon E.W., Huber M.L., Mclinden M.O., NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP, Version 9.0, 2010.

  22. ANSYS User’s Manual, Release 18.1, SAS IP, Inc., 2017.

  23. Xu Q., Feng J., Analysis of nozzle gas speed on the performance of the zoned and staged gas-fired radiant tube. Applied Thermal Engineering, 2017, 118: 734–741.

    Article  Google Scholar 

  24. Xu Q., Feng J., Zhou J., et al., Study of a new type of radiant tube based on the traditional M-type structure. Applied Thermal Engineering, 2019, 150: 849–857.

    Article  Google Scholar 

  25. Xu Q., Zou Z., Chen Y., et al., Performance of a novel-type of heat flue in a coke oven based on high-temperature and low-oxygen diffusion combustion technology. Fuel, 2020, 267: 117160.

    Article  Google Scholar 

  26. Menter F.R., Two-equation eddy-viscosity turbulence models for engineering applications. AIAA Journal, 1994, 32(8): 1598–1605.

    Article  ADS  Google Scholar 

  27. Yang Z.N., Chen W., Chyu M.K., Numerical study on the heat transfer enhancement of supercritical CO2 in vertical ribbed tubes. Applied Thermal Engineering, 2018, 145: 705–715.

    Article  Google Scholar 

  28. Chen W., Yang Z.N., Yang L., et al., Numerical investigation of heat transfer and flow characteristics of supercritical CO2 in U-duct. Applied Thermal Engineering, 2018, 144: 532–539.

    Article  Google Scholar 

  29. Li H.Z., Kruizenga A., Anderson M., et al., Development of a new forced convection heat transfer correlation for CO2 in both heating and cooling modes at supercritical pressures. International Journal of Thermal Sciences, 2011, 50(12): 2430–2442.

    Article  Google Scholar 

  30. Eze C., Wong K.W., Tobias G., et al., Numerical study of effects of vortex generators on heat transfer deterioration of supercritical water upward flow. International Journal of Heat and Mass Transfer, 2019, 137: 489–505.

    Article  Google Scholar 

  31. Du X., Lv Z.H., Zhao S., et al., Numerical analysis of diameter effects on convective supercritical water flow in a vertical round tube. Applied Thermal Engineering, 2019, 160: 114095.

    Article  Google Scholar 

  32. Chen Y., Xu D., Chen Z., et al., Performance analysis and evaluation of a supercritical CO2 Rankine cycle coupled with an absorption refrigeration cycle. Journal of Thermal Science, 2020, 29(4): 1036–1052.

    Article  MathSciNet  ADS  Google Scholar 

  33. Zhu X., Lyu Z.H., Xiao Y.U., et al., Heat transfer enhancement of supercritical nitrogen flowing downward in a small vertical tube: Evaluation of system parameter effects. Journal of Thermal Science, 2020, 29: 1487–1503.

    Article  ADS  Google Scholar 

  34. Li B.F., Zhang Q.L., Cao A.Q., et al., Experimental and numerical studies on the diffusion of CO2 from oil to water. Journal of Thermal Science, 2020, 29: 268–278.

    Article  ADS  Google Scholar 

  35. Adebiyi G.A., Hall W.B., Experimental investigation of heat transfer to supercritical pressure carbon dioxide in a horizontal pipe. International Journal of Heat & Mass Transfer, 1976, 19(7): 715–720.

    Article  Google Scholar 

  36. Luo X., Yang Z., Chen W., et al., Effect of lattice structures on heat transfer deterioration of supercritical CO2 in rectangle channels. Numerical Heat Transfer, Part A: Applications, 2020, 77(11): 931–950.

    Article  ADS  Google Scholar 

  37. Eter A., Groeneveld D., Tavoularis S., Convective heat transfer in supercritical flows of CO2 in tubes with and without flow obstacles. Nuclear Engineering and Design, 2017, 313: 162–176.

    Article  Google Scholar 

Download references

Acknowledgement

This research was supported by the National Natural Science Foundation of China (No. 52076143).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, X., Yang, ZN., Zhang, J. et al. Effect of Guide Vane on Pressure Loss and Heat Transfer Characteristics of Supercritical CO2 in U-Shaped Channel. J. Therm. Sci. 31, 701–711 (2022). https://doi.org/10.1007/s11630-022-1530-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11630-022-1530-z

Keywords

Navigation