Skip to main content
Log in

Riser simulation and radial porosity distribution characterization for gas-fluidized bed of cork particles

  • Published:
Journal of Thermal Science Aims and scope Submit manuscript

Abstract

Numerical simulations are carried out for gas-solid fluidized bed of cork particles, using discrete element method. Results exhibit the existence of a so-called anti core-annular porosity profile with lower porosity in the core and higher porosity near the wall for non-slugging fluidization. The tendency to form this unfamiliar anti core-annular porosity profile is stronger when the solid flux is higher. There exist multiple inflection points in the simulated axial solid volume fraction profile for non-slugging fluidization. Results also show that the familiar core-annular porosity profile still appears for slugging fluidization. In addition, the classical choking phenomenon can be captured at the superficial gas velocity slightly lower than the correlated transport velocity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Ar :

Archimedes number

C D :

standard drag coefficient

d :

diameter, m

F C :

collision force on particle, N

F D :

drag force on particle, N

G s :

solid mass flux, kg·m−2s−1

g :

gravity acceleration vector, m·s−2

i :

particle index

p :

pressure, Pa

Re :

Reynolds number

Sp :

momentum exchange source term, kg·m−2s−2

t :

time, s

U :

superficial velocity, m·s−1

u :

gas velocity, m·s−1

V :

volume of particle, m3

V G :

volume of grid, m3

v :

particle velocity, m·s−1

ɛ 2D :

two-dimensional porosity

ɛ 3D :

three-dimensional porosity

ɛ :

Porosity

µ:

viscosity, N·s·m−2

π :

ratio of circumference

ρ :

density, kg·m−3

τ :

viscous stress tensor, Pa

g:

gas

i :

particle index

p:

particle

tr:

at transport velocity

References

  1. Bi H. T., Grace J. R. and Zhu J. X.: Types of Choking in Vertical Pneumatic Systems, International Journal of Multiphase Flow, Vol. 19(6), pp. 1077–1092 (1993)

    Article  MATH  Google Scholar 

  2. Kashyap M., Gidaspow D., and Koves W. J.: Circulation of Geldart D Type Particles: Part I-High Solids Fluxes, Chemical Engineering Science, Vol. 66(2), pp. 183–206 (2011)

    Article  Google Scholar 

  3. Guenther C. and Breault R.: Wavelet Analysis to Characterize Cluster Dynamics in a Circulating Fluidized Bed, Powder Technology, Vol. 173(3), pp. 163–173 (2007)

    Article  Google Scholar 

  4. Tsuji Y., Kawaguchi T. and Tanake T.: Discrete Particle Simulation of Two-dimensional Fluidized Bed, Powder Technology, Vol. 77(1), pp. 79–87 (1993)

    Article  Google Scholar 

  5. Hoomans B. P. B., Kuipers J. A. M., Briels W. J. and Van Swaaij W. P. M.: Discrete Particle Simulation of Bubble and Slug Formation in a Two-dimensional Gasfluidized Bed: a Hard-sphere Approach, Chemical Engineering Science, Vol. 51(1), pp. 99–108 (1996)

    Article  Google Scholar 

  6. Xu B. H. and Yu A. B.: Numerical Simulation of the Gas-solid Flow in a Fluidized Bed by Combining Discrete Particle Method with Computational Fluid Dynamics, Chemical Engineering Science, Vol. 52(16), pp. 2785–2809 (1997)

    Article  Google Scholar 

  7. Ouyang J. and Li J. H.: Discrete Simulations of Heterogeneous Structure and Dynamic Behaviour in Gas-solid Fluidization, Chemical Engineering Science, Vol. 54(22), pp. 5427–5440 (1999)

    Article  Google Scholar 

  8. Kleijn van Willigen F., Demirbas B., Deen N. G., Kuipers J. A. M. and Van Ommen J. R.: Discrete Particle Simulations of an Electric-field Enhanced Fluidized Bed, Powder Technology, Vol. 183(2), pp. 196–206 (2008)

    Article  Google Scholar 

  9. Zhao X. L., Li S. Q., Liu G. Q., Yao Q. and Marshall J. S.: DEM Simulation of the Particle Dynamics in Twodimensional Spouted Beds, Powder Technology, Vol. 184(2), pp. 205–213 (2008)

    Article  Google Scholar 

  10. Zou L. M., Guo Y. C. and Chan C. K.: Cluster-based Drag Coefficient Model for Simulating Gas-solid Flow in a Fast-fluidized Bed, Chemical Engineering Science, 63(4), pp. 1052–1061 (2008)

    Article  Google Scholar 

  11. Wu C. N., Cheng Y., Ding Y. L. and Jin Y.: CFD-DEM Simulation of Gas-solid Reacting Flows in Fluid Catalytic Cracking (FCC) Process, Chemical Engineering Science, Vol. 65(1), pp. 542–549 (2010)

    Article  Google Scholar 

  12. Li X., Wang S. Y., Lu H. L., Liu G. D., Chen J. H. and Liu Y. K.: Numerical Simulation of Particle Motion in Vibrated Fluidized Beds, Powder Technology, Vol. 197(1–2), pp. 25–35 (2010)

    ADS  Google Scholar 

  13. Hao Z. H., Li X., Lu H. L., Liu G. D., He Y. R., Wang S. and Xue P. F.: Numerical Simulation of Particle Motion in a Gradient Magnetically Assisted Fluidized Bed, Powder Technology, Vol. 203(3), pp. 555–564 (2010)

    Article  Google Scholar 

  14. Geng Y. M. and Che D. F.: An Extended DEM-CFD Model for Char Combustion in a Bubbling Fluidized Bed Combustor of Inert Sand, Chemical Engineering Science, Vol. 66(2), pp. 207–219 (2011)

    Article  Google Scholar 

  15. Wang S., Li X., Lu H. L., Liu G. D., Wang J. X. and Xue P. F.: Simulation of Cohesive Particle Motion in a Sound-assisted Fluidized Bed, Powder Technology, Vol. 207(1–3), pp. 65–77 (2011)

    Google Scholar 

  16. Monazam E. R., Shadle L. J., Mei J. S. and Spenik J.: Identification and Characteristics of Different Flow Regimes in a Circulating Fluidized Bed, Powder Technology, Vol. 155(1), pp. 17–25 (2005)

    Article  Google Scholar 

  17. Patankar T. V.: Numerical Heat Transfer and Fluid Flow, McGraw-Hill, New York (1980)

    MATH  Google Scholar 

  18. Wen C. Y. and Yu Y. H.: Mechanics of Fluidization, Chemical Engineering Progress Symposium Series, Vol. 62(62), pp. 100–111 (1966)

    Google Scholar 

  19. Monazam E. R. and Shadle L. J.: Method and Prediction of Transition Velocities in a Circulating Fluidized Bed’s Riser, Industrial & Engineering Chemistry Research, Vol. 50(4), pp. 1921–1927 (2011)

    Article  Google Scholar 

  20. Jiradilok V., Gidaspow D., Breault R. W., Shadle L. J., Guenther C. and Shi S.: Computation of Turbulence and Dispersion of Cork in the NETL Riser, Chemical Engineering Science, Vol. 63(8), pp. 2135–2148 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work is supported by the National Natural Science Foundation of China (10871159) and the Presidential Foundation of Gansu Normal University for Nationalities (201301).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, G., Ouyang, J. & Li, Q. Riser simulation and radial porosity distribution characterization for gas-fluidized bed of cork particles. J. Therm. Sci. 23, 368–374 (2014). https://doi.org/10.1007/s11630-014-0719-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11630-014-0719-1

Keywords

Navigation