Skip to main content
Log in

Heat transfer to foods: Modelling and validation

  • Published:
Journal of Thermal Science Aims and scope Submit manuscript

Abstract

The food industry uses a wide variety of processes which are not well understood. Current modelling and measurement approaches are reviewed, with specific reference to work at Birmingham on Particle tracking (PEPT) and the potential of temperature time indicators in process validation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Campbell, G M, Webb, C, Pandiella, S S, et al. Bubbles in Food. Pub. Eagan Press, 1999

  2. Ball, C O. Thermal Process Time for Canned Foods. Bulletin of the Nat. Resources Council, 1923, 7: 1

    Google Scholar 

  3. Taoukis, P S. Modelling the Use of Time-Temperature Indicators in Distribution and Stock Rotation. In: Food Process Modelling. Ed: L M M Tijskens, M Hertog, B Nicolai, Woodhead Publishing, 2001

  4. Maesmans, G, Hendrickx, M, De Cordt, S, et al. Theoretical Considerations on Design of Multicomponent Time Temperature Integrators in Evaluation of Thermal Processes. J. Fd Proc. Pres., 1993, 17: 369–389

    Google Scholar 

  5. Tucker, G S. Validation of Heat Processes. In: Thermal Technologies in Food Processing. Ed: P. Richardson. Woodhead Publishing, 2001

  6. Van Loey, A, Ludikhuyze, L, Hendrickx, M, et al. Theoretical Consideration on the Influence of the z-value of a Single Component Time/Temperature Integrator on Thermal Process Impact Evaluation. J. Food Protection, 1995, 58: 39–48

    Google Scholar 

  7. Kim, K H, Teixeira, A A. Predicting Internal Temperature Responses to Conduction-Heating of Odd Shaped Solids. J. Food Process Eng., 1997, 20: 51–63

    Article  Google Scholar 

  8. Lopez, A. Heat Process Determinations. In: A Complete Course in Canning and Related Processes. Pub: The Canning Trade Inc. Baltimore, 1987, 2: 21–30

    Google Scholar 

  9. Toledo, R T. Thermal Process Calculations. In: Fundamentals of Food Process Engineering. 2nd Edition. Pub: Van Nostrand Reinhold. 1991, 315–397

  10. Akterian, S G. Online Strategy for Compensating for Arbitrary Deviations in Heating Medium Temperature During Batch Thermal Sterilization Processes. J. Food Eng., 1999, 39: 1–7

    Article  Google Scholar 

  11. Bellara, S R, Fryer, P J, McFarlane, C M, et al. Visualization and Modelling of the Thermal Inactivation of Bacteria in a Model Food. Appl. Env. Microbiol., 1999: 65: 3095–3099

    Google Scholar 

  12. Mackey, B M, Derrick, C M. Changes in the Heat Resistance of Salmonella Typhimurium During Heating at Rising Temperatures. Lett. Appl. Microbiol, 1987, 4: 13–16

    Google Scholar 

  13. Verboven, P, Nicolaï, B M, Scheerlinck, N, et al. The Local Surface Heat Transfer Coefficient in Thermal Food Process Calculations: A CFD Approach. J. Food Eng., 1997, 33, 15–35

    Article  Google Scholar 

  14. Pan, Z, Singh, R P, Rumsey, T R. Predictive Modelling of Contact-Heating Process for Cooking a Hamburger Patty. J. Food Eng., 2000, 46: 9–19

    Article  Google Scholar 

  15. Tewkesbury, H, Stapley, A G F, Fryer, P J. Modelling Temperature Distributions in Cooling Chocolate Moulds. Chem. Eng. Sci., 2000, 55: 3123–3132

    Article  Google Scholar 

  16. Kumar, A, Bhattacharya, M, Blaylock, J, Numerical Simulation of Natural Convection Heating of Canned Thick Viscous Food Products. J. Food Sci., 1990, 55: 1403–1411, 1420

    Article  Google Scholar 

  17. Abdul Ghani, A G, Farid, M M, Chen, X D, et al. Numerical Simulation of Natural Convection Heating of Canned Food by Computational Dynamics. J. Food. Eng., 1999, 41: 55–64

    Article  Google Scholar 

  18. Abdul Ghani, A G, Farid, M M, Chen, X D, et al. An Investigation of Deactivation of Bacteria in a Canned Liquid Food During Sterilization Using Computational Fluid Dynamics. J. Food. Eng., 1999, 42: 207–214

    Article  Google Scholar 

  19. Parker, D, Broadbent, C J, Fowles, P, et al. A Positron Emission Particle Tracking - A Technique for Studying Flow Within Engineering Equipment. Nuclear Instruments and Methods A, 1993, 236–592

  20. Cox, P W, Bakalis, S, Ismail, H, et al. Visualisation of Three-Dimensional Flows in Rotating Cans Using Positron Emission Particle Tracking (PEPT). J. Food Proc. Eng., In press, 2002

  21. Varga, S, Oliveria, J C, Smout, Chantal, C, et al. Modelling Temperature Variability in Batch Retorts and Its Impact on Lethality Distribution. J. Food. Eng., 2000, 44: 163–174

    Article  Google Scholar 

  22. Verboven, P, Scheerlinck, N, De Baerdemaeker, J, et al. Computational Fluid Dynamics Modelling and Validation of the Temperature Distribution in a Forced Convection Oven. J. Food Eng., 2000, 43: 61–73

    Article  Google Scholar 

  23. Bakalis, S, Fryer, P J. Measurement of Velocity Distributions of Viscous Fluids Using Positron Emitting Particle Tracking. 6th World Congress of Chemical Engineering, Melbourne Australia, 2001

  24. Jung, A, Fryer, P J. Optimising the Quality of Safe Food: Computational Modelling of a Continuous Sterilisation Process. Chem. Eng. Sci., 1999, 54: 717–730

    Article  Google Scholar 

  25. Liao, H J, Rao, M A, Datta, A K. Role of Thermorheological Behaviour in Simulation of Continuous Sterilization of a Starch Dispersion Trans. IChemE., 2000, 78: C, 48–56

    Google Scholar 

  26. Lareo, C, Branch, C A, Fryer, P J. Particle Velocity Profiles for Solid-Liquid Food Flows in Vertical Pipes. 1. Single Particles. Powder Tech., 1997, 93: 23–34

    Article  Google Scholar 

  27. Lareo, C, Nedderman, R M, Fryer, P J. Particle Velocity Profiles for Solid-Liquid Food Flows in Vertical Pipes. 2. Multiple Particles. Powder Tech., 1997, 93: 35–45

    Article  Google Scholar 

  28. Liu Shi, Pain, J-P, Proctor, J M, et al. An Experimental Study of Particle Flow Velocities in Solid-Liquid Food Mixtures. Chem. Eng. Commun., 1993, 124: 97–114

    Article  Google Scholar 

  29. Lareo, C, Fryer, P J, Barigou, M. The Fluid Mechanics of Two-Phase Solid-Liquid Food Flows: A Review. Trans. IchemE., 1997, 75: C, 73–105

    Google Scholar 

  30. Barigou, M, Mankad, S, Fryer, P J. Heat Transfer in Two-Phase Solid-Liquid Food Flows: A Review. Trans. IChemE., 1998, 76: C, 3–29

    Google Scholar 

  31. Mankad, S, Branch, C A, Fryer, P J. The Effect of Particle Slip on the Sterilization of Solid-Liquid Food Mixtures. Chem. Eng. Sci., 1995, 50: 1323–1336

    Article  Google Scholar 

  32. Sun, X Z, Litchfield, J B, Schmidt, S J. Temperature Mapping in a Model Food Gel Using Magnetic Resonance Imaging. J. Food Sci., 1993, 68: 168–172, 181

    Article  Google Scholar 

  33. Sun, X Z, Schmidt, S J, Litchfield, J B. Temperature Mapping in a Potato Using Half Fourier Transform MRI of Diffusion. J. Food Proc. Eng., 1994, 17: 423–437

    Article  Google Scholar 

  34. Hulbert, G J, Litchfield, J B, Schmidt, S J. Determination of Convective Heat Transfer Coefficients Using 2D MRI Temperature Mapping and Finite Element Modelling. J. Fd. Eng., 1997, 34: 193–201

    Article  Google Scholar 

  35. Kantt, C A, Schmidt, S J, Sizer, C E, et al. Temperature Mapping of Particles During Aseptic Processing with Magnetic Resonance Imaging. J. Food. Sci., 1998, 63: 305–311

    Article  Google Scholar 

  36. Fairhurst, P G, Barigou, M, Fryer, P J, et al. Using Positron Emission Particle Tracking (PEPT) to Study Nearly Buoyant Particles in High Solid Fraction Pipe Flow. Int. J. of Multiphase Flow, 2001, 27: 1881–1901

    Article  MATH  Google Scholar 

  37. Metaxas, A C. Foundations of Electroheat: a Unified Approach Pub Wiley. 1996

  38. Fryer, P J, Davies, L J. Modelling Electrical Resistance (‘Ohmic’) Heating in Foods. In ‘Food Process Operations Modelling: Design and Analysis’. Ed: J. Irudayraji. Marcel Deker, 2001

  39. Bows, J R. A Classification System for Microwave Heating of Food. Int. J. Fd. Sci. Tech., 2000, 35: 417–430

    Article  Google Scholar 

  40. Bows, J R, Patrick, M L, Janes, R, et al. Microwave Phase Control Heating. Int. J. Food Sci. Technol., 1999, 34: 295–304

    Article  Google Scholar 

  41. Dibben, D C, Metaxas, A C. Finite Element Time Domain Analysis of Multimode Applicators Using Edge Elements. J. Microwave Power and Electromagnetic Energy, 1994, 29: 242–251

    Google Scholar 

  42. de Alwis, A A P, Halden, K, Fryer, P J. Shape and Conductivity Effects in the Ohmic Heating of Foods. Chem. Eng. Res. Des., 1989, 67: 159–168

    Google Scholar 

  43. Kemp, M, Davies, L, Fryer, P J. The Geometry of Shadows: Effects of Inhomogeneities in Electrical Field Processing. J. Food Eng., 1999, 40: 245–258

    Article  Google Scholar 

  44. Zhang, Li, Fryer, P J. Models for the Electrical Heating of Solid-Liquid Food Mixtures. Chem. Eng. Sci., 1993, 48: 633–643

    Article  Google Scholar 

  45. Zhang, Li, Fryer, P J. Food Processing by Electrical Heating; the Sensistivity of Product Sterility and Quality to Process Parameters. AIChEJ, 1994, 40: 888–898

    Article  Google Scholar 

  46. Ruan, R, Chen, P, Chang, K, et al. Rapid Food Particle Measurement Temperature Mapping During Ohmic Heating Using FI-ASH MRI. J. Food Sci., 1999, 64: 1024–1026

    Article  Google Scholar 

  47. Van Impe, J F, Bernaerts, K, Geeraerd, A H, et al. Modelling and Prediction in an Uncertain Environment. In: Thermal Technologies in Food Processing. Ed: P. Richardson. Woodhead Publishing Ltd, 2001

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cox, P.W., Fryer, P.J. Heat transfer to foods: Modelling and validation. J. of Therm. Sci. 11, 320–330 (2002). https://doi.org/10.1007/s11630-002-0045-x

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11630-002-0045-x

Keywords

Navigation