Skip to main content
Log in

Identification and quantitative determination of feruloyl-glucoside from hairy root cultures of Turbinicarpus lophophoroides (Werderm.) Buxb. & Backeb. (Cactaceae)

  • Bioactive/Medicinal Compounds
  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Abstract

Transformed hairy root cultures have become an alternative for the biosynthesis of plant secondary metabolites with biological activities. In this present work, the effects of liquid Murashige and Skoog (MS) and Gamborg B5 (B5) medium on kinetic behavior, biomass and phenolic metabolite production were analyzed in Turbinicarpus lophophoroides (Werderm.) Buxb. & Backeb. hairy root cultures. Liquid MS medium showed the highest biomass production (13.67 g L−1 dry weight) after 77 d of culture. For B5 medium, highest biomass was achieved sooner, at day 56, but with lower total biomass (8.10 g L−1 dry weight). After isolation, structural elucidation of the major compound present in T. lophophoroides hairy roots was determined by nuclear magnetic resonance and mass spectral analysis. As a result, a ferulic acid derivative (feruloyl-glucoside) was isolated from T. lophophoroides hairy roots and reported for the first time. Quantitative analysis indicated that feruloyl-glucoside was the major phenolic metabolite at 56 d of growth in MS medium (2.7267 ± 0.041 mg g−1 dry weight L−1) and at 7 and 35 d in B5 medium (2.6328 ± 0.108 and 2.4372 ± 0.026 mg g−1 dry weight L−1, respectively). The feruloyl-glucoside was not detected in untransformed roots (control). The present results suggested the potential of T. lophophoroides hairy roots culture for the production of this phenolic glycoside.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.

Similar content being viewed by others

References

  • Abu-Reidah IM, Arráez-Román D, Quirantes-Piné R, Fernández-Arroyo S, Segura-Carretero A, Fernández-Gutiérrez A (2012) HPLC–ESI-Q-TOF-MS for a comprehensive characterization of bioactive phenolic compounds in cucumber whole fruit extract. Food Res Int 46:108–117

    Article  CAS  Google Scholar 

  • Astello-García MG, Cervantes I, Nair V, Santos-Díaz MS, Reyes-Agüero A, Guéraud F, Negre-Salvayre A, Rossignol M, Cisneros-Zevallos L, Barba de la Rosa AP (2015) Chemical composition and phenolic compounds profile of cladodes from Opuntia spp. cultivars with different domestication gradient. J Food Compos Anal 43:119–130

    Article  Google Scholar 

  • Bokern M, Wray V, Strack D (1991) Accumulation of phenolic acid conjugates and betacyanins, and changes in the activities of enzymes involved in feruloylglucose metabolism in cell-suspension cultures of Chenopodium rubrum L. Planta 184:261–270

    Article  CAS  Google Scholar 

  • Chougui N, Djerroud N, Naraoui F, Hadjal S, Aliane K, Zeroual B, Larbat R (2015) Physicochemical properties and storage stability of margarine containing Opuntia ficus-indica peel extract as antioxidant. Food Chem 173:382–390

    Article  CAS  Google Scholar 

  • Dubois M, Gilles A, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substantes. Anal Chem 28:350–356

    Article  CAS  Google Scholar 

  • Gamborg OL, Miller RA, Ojima K (1968) Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res 50:151–158

    Article  CAS  Google Scholar 

  • Georgiev MI, Agostini E, Ludwig-Muller J, Xu J (2012) Genetically transformed roots: from plant disease to biotechnological resource. Trends Biotechnol 30:528–537

    Article  CAS  Google Scholar 

  • Georgiev MI, Pavlov AI, Bley T (2007) Hairy root type plant in vitro systems as sources of bioactive substances. Appl Microbiol Biotechnol 74:1175

    Article  CAS  Google Scholar 

  • Gómez-Aguirre YA, Zamilpa A, González-Cortazar M, Trejo-Tapia G (2012) Adventitious root cultures of Castilleja tenuiflora Benth. as a source of phenylethanoid glycosides. Ind Crop Prod 36:188–195

    Article  Google Scholar 

  • Hamada K, Tsutsumi Y, Yamauchi K, Fukushima K, Nishida T (2003) Treatment of poplar callus with ferulic and sinapic acids I: incorporation and enhancement of lignin biosynthesis. J Wood Sci 49:333–338

    Article  CAS  Google Scholar 

  • Jiménez-Aspee F, Quispe C, Soriano MPC, Fuentes Gonzalez J, Hüneke E, Theoduloz C, Schmeda-Hirschmann G (2014) Antioxidant activity and characterization of constituents in copao fruits (Eulychnia acida Phil., Cactaceae) by HPLC–DAD–MS/MSn. Food Res Int 62:286–298

    Article  Google Scholar 

  • Kim JW, Kim TB, Yang H, Sung SH (2016) Phenolic compounds isolated from Opuntia ficus-indica fruits. Nat Prod Sci 22:117–121

    Article  CAS  Google Scholar 

  • Kovács Z, Dinya Z (2000) Examination of non-volatile organic compounds in red wines made in Eger. Microchem J 67:57–62

    Article  Google Scholar 

  • Lin LZ, Harnly JM (2010) Phenolic component profiles of mustard greens, yu choy, and 15 other Brassica vegetables. J Agric Food Chem 58:6850–6857

    Article  CAS  Google Scholar 

  • Lucini L, Rocchetti G, Kane D, Trevisan M (2017) Phenolic fingerprint allows discriminating processed tomato products and tracing different processing sites. Food Control 73:696–703

    Article  CAS  Google Scholar 

  • Ludwig-Muller J, Jahn L, Lippert A, Puschel J, Walter A (2014) Improvement of hairy root cultures and plants by changing biosynthetic pathways leading to pharmaceutical metabolites: strategies and applications. Biotechnol Adv 32:1168–1179

    Article  Google Scholar 

  • Madala NE, Steenkamp PA, Piater LA, Dubery IA (2014) Metabolomic insights into the bioconversion of isonitrosoacetophenone in Arabidopsis thaliana and its effects on defense-related pathways. Plant Physiol Biochem 84:87–95

    Article  CAS  Google Scholar 

  • Matkowski A (2008) Plant in vitro culture for the production of antioxidants - a review. Biotechnol Adv 26:548–560

    Article  CAS  Google Scholar 

  • Mehrotra S, Srivastava V, Ur Rahman L, Kukreja AK (2015) Hairy root biotechnology--indicative timeline to understand missing links and future outlook. Protoplasma 252:1189–1201

    Article  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Palomeque-Carlín A, Tafoya F, Alpuche Solís AG, Pérez-Molphe-Balch E (2015) Effects of different culture media and conditions on biomass production of hairy root cultures in six Mexican cactus species. In Vitro Cell Dev Biol–Plant 51:332–339

    Article  Google Scholar 

  • Pérez-Ilzarbe J, Hernández T, Estrella I (1991) Phenolic compounds in apples: varietal differences. Z Lebensm Unters Forsch 192:551–554

    Article  Google Scholar 

  • Pérez-Molphe-Balch E, Santos-Díaz MS, Ramírez-Malagón R, Ochoa-Alejo N (2015) Tissue culture of ornamental cacti. Sci Agric 72:540–561

    Article  Google Scholar 

  • Russowski D, Maurmann N, Rech SB, Fett-Neto AG (2006) Role of light and medium composition on growth and valepotriate contents in Valeriana glechomifolia whole plant liquid cultures. Plant Cell Tissue Organ Cult 86:211–218

    Article  CAS  Google Scholar 

  • Semarnat (2010) Protección ambiental-Especies nativas de México de flora y fauna silvestres-Categorías de riesgo y especificaciones para su inclusión, exclusión o cambio-Lista de especies en riesgo. NOM-059-SEMARNAT-2010. Diario oficial de la federación, México, pp. 1–78

  • Smith M, Fitz Maurice WA, Fitz Muarice B, Sotomayor M (2013) Turbinicarpus lophophoroides, Biznaguita. The IUCN red list of threatned species, 10.2305/IUCN.UK.2013-1.RLTS.T40981A2949100.en. Accessed 6/29/18

  • Štarha R, Chybidziurová A, Lacný Z (1999) Alkaloids of the genus Turbinicarpus (Cactaceae). Biochem Syst Ecol 27:839–841

    Article  Google Scholar 

  • Tang X, Olatunji OJ, Zhou Y, Hou X (2017) Allium tuberosum: antidiabetic and hepatoprotective activities. Food Res Int 102:681–689

    Article  CAS  Google Scholar 

  • Tanimoto S, Tominaga H, Okada Y, Nomura K (2006) Synthesis and cosmetic whitening effect of glycosides derived from several phenylpropanoids. Yakugaku Zasshi 126:173–177

    Article  CAS  Google Scholar 

  • Trejo-Moreno C, Méndez-Martínez M, Zamilpa A, Jimenez-Ferrer E, Perez-Garcia MD, Medina-Campos ON, Pedraza-Chaverri J, Santana MA, Esquivel-Guadarrama FR, Castillo A, Cervantes-Torres J, Fragoso G, Rosas-Salgado G (2018) Cucumis sativus aqueous fraction inhibits angiotensin II-induced inflammation and oxidative stress in vitro. Nutrients 10:1–14

    Article  Google Scholar 

  • Villaseñor JL (2016) Checklist of the native vascular plants of Mexico. Rev Mex Biodivers 87:559–902

    Article  Google Scholar 

  • Wagner H, Bladt S (1996) Plant drug analysis: a thin layer cromatography atlas. Springer, Berlin

    Book  Google Scholar 

  • Weremczuk-Jeżyna I, Grzegorczyk-Karolak I, Frydrych B, Krolicka A, Wysokińska H (2013) Hairy roots of Dracocephalum moldavica: rosmarinic acid content and antioxidant potential. Acta Physiol Plant 35:2095–2103

    Article  Google Scholar 

  • Wu CH, Dewir YH, Hahn EJ, Paek KY (2006) Optimization of culturing conditions for the production of biomass and phenolics from adventitious roots of Echinacea angustifolia. Journal of Plant Biology 49:193–199

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Departamento de Apoyo a la Investigación de la Universidad Autónoma de Aguascalientes (UAA) (Grants PIBT16-16). G.J. Solis-Castañeda is indebted to Consejo Nacional de Ciencia y Tecnología (CONACyT-México) for the doctoral fellowship awarded. Y.A. Gómez-Aguirre is grateful to Cátedras-CONACyT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yenny A Gómez-Aguirre.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Editor: Praveen Saxena

Electronic supplementary material

Figure S1.

Full mass spectrometry scan data in negative ion mode of Peak 1 (m/z 355.1) of Turbinicarpus lophophoroides (Werderm.) Buxb. & Backeb. hairy roots cultures grown in liquid Murashige and Skoog (MS; Murashige and Skoog 1962) at 56 d (exponential growth phase) (PNG 111 kb)

High resolution image (EPS 14.2 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Solis-Castañeda, G.J., Zamilpa, A., Cabañas-García, E. et al. Identification and quantitative determination of feruloyl-glucoside from hairy root cultures of Turbinicarpus lophophoroides (Werderm.) Buxb. & Backeb. (Cactaceae). In Vitro Cell.Dev.Biol.-Plant 56, 8–17 (2020). https://doi.org/10.1007/s11627-019-10029-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11627-019-10029-z

Keywords

Navigation