Skip to main content

Advertisement

Log in

In vitro propagation and ultrastructural studies of somatic embryogenesis of Ledebouria ovatifolia

  • Micropropagation
  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Abstract

Simple and efficient in vitro plant production systems were established for Ledebouria ovatifolia (Bak.) Jess. Adventitious shoots were best produced from leaf explants with Murashige and Skoog medium containing 5 μM thidiazuron and 2 μM naphthaleneacetic acid, and from organogenic callus with Murashige and Skoog medium containing 2 μM indole-3-acetic acid, 5 μM thidiazuron, and 30 μM glutamine. Indole-3-butyric acid and 25 μM phloroglucinol were effective for rooting of shoots. Embryogenic callus was induced on semi-solid medium containing growth regulators. The highest numbers of somatic embryos, 43.2–35.6 (globular to cotyledonary stages, respectively) from friable, embryogenic callus were obtained on liquid medium with 15 g L−1 sucrose, 10 μM glutamine, 0.1 μM picloram, and 0.2 μM thidiazuron. Seventy-three percent of somatic embryos germinated on semi-solid medium with 15 g L−1 sucrose, 0.3 μM gibberellic acid, 0.3 μM phloroglucinol, and Murashige and Skoog macronutrients. All plantlets were successfully acclimatized in the greenhouse. Production of clonal plants was confirmed by features of embryoids using light and transmission electron microscopy, which detected cytoplasmic components including many mitochondria, lipid bodies together with starch grains, chloroplasts, Golgi apparatuses, vacuoles, and nuclei. The reported developmental system reinforced the importance of nutritional and hormonal effects as well as the effect of phloroglucinol on in vitro plant production. Histological and ultrastructural studies demonstrated the bipolar structure, and viability of somatic embryoids. The micropropagation and somatic embryogenesis protocols reported here provide systems for germplasm conservation and large-scale clonal propagation, and for pharmacological, and genetic transformation studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  • Ali NB, Lamarti A (2014) Macronutrients effect on secondary somatic embryogenesis of Moroccan cork oak (Quercus suber L.). Am J Plant Sci 5:1851–1861

    Article  Google Scholar 

  • Ascough GD, Van Staden J (2010) Micropropagation of Albuca bracteata and A. nelsonii—indigenous ornamentals with medicinal value. S Afr J Bot 76:579–584

    Article  CAS  Google Scholar 

  • Bakhshaie M, Babalar M, Mirmasoumi M, Khalighi A (2010) Somatic embryogenesis and plant regeneration of Lilium ledebourii (Baker) Boiss., an endangered species. Plant Cell Tissue Organ Cult 102:229–235

    Article  CAS  Google Scholar 

  • Baskaran P, Singh S, Van Staden J (2013) In vitro propagation, proscillaridin A production and antibacterial activity in Drimia robusta. Plant Cell Tissue Organ Cult 114:259–267

    Article  CAS  Google Scholar 

  • Baskaran P, Van Staden J (2012) Somatic embryogenesis of Merwilla plumbea (Lindl.) Speta. Plant Cell Tissue Organ Cult 109:517–524

    Article  CAS  Google Scholar 

  • Baskaran P, Van Staden J (2014) Plant regeneration via somatic embryogenesis in Drimia robusta. Plant Cell Tissue Organ Cult 119:281–288

    Article  CAS  Google Scholar 

  • Benelli C, Germana MA, Camino T, Beghe D, Fabbri A (2010) Morphological and anatomical observations of abnormal somatic embryos from anther cultures of Citrus reticulate. Biol Plant 54:224–230

    Article  Google Scholar 

  • George EF, Hall MA, De Klerk GJ (2008) Plant propagation by tissue culture. The background, vol 1. Springer Verlag, Dordrecht, The Netherlands

  • Georgiev V, Ivanov I, Berkov S, Pavlov A (2011) Alkaloids biosynthesis by Pancratium maritimum L. shoots in liquid culture. Acta Physiol Plant 33:927–933

    Article  CAS  Google Scholar 

  • Gerstner J (1938) A preliminary check list of Zulu names of plants, with short notes. Bantu Stud 12:321–342

    Article  Google Scholar 

  • Govaerts R (2016) Species details: Ledebouria ovatifolia (Baker) Jessop. In: Catalogue of Life. Plants people possibilities. http://www.catalogueoflife.org/col/details/species/id/bc54be7751b8a546f599937a208fad64. Cited 29 Jan 2016

  • Groll J, Mycock DJ, Gray VM (2002) Effect of medium salt concentration on differentiation and maturation of somatic embryos of Cassava (Manihot esculenta Crantz). Ann Bot 89:645–648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hutchings A, Scott AH, Lewis G, Cunningham AB (1996) Zulu medicinal plants. An inventory. University of Natal Press, Pietermaritzburg, pp 38–44

    Google Scholar 

  • Jain RK, Davey MR, Cocking EC, Wu R (1997) Carbohydrate and osmotic requirements for high frequency plant regeneration from protoplast-derived colonies of indica and japonica rice varieties. J Exp Bot 48:751–758

    Article  CAS  Google Scholar 

  • Komatsuda T, Lee W, Oka S (1992) Maturation and germination of somatic embryos as affected by sucrose and plant growth regulators in soybeans Glycine gracilis Skvortz and Glycine max (L.) Merr. Plant Cell Tissue Organ Cult 28:103–113

    Article  CAS  Google Scholar 

  • Kumari A, Baskaran P, Van Staden J (2015) Enhanced HIV-1 reverse transcriptase inhibitory and antibacterial properties in callus of Catha edulis Forsk. Phytother Res 29:840–843

    Article  CAS  PubMed  Google Scholar 

  • Lincy AK, Remashree AB, Sasikumar B (2009) Indirect and direct somatic embryogenesis from aerial stem explants of ginger (Zingiber officinale Rosc.). Acta Bot Croat 68:93–103

    CAS  Google Scholar 

  • Lu CY, Vasil V, Vasil IK (1983) Improved efficiency of somatic embryogenesis and plant regeneration in tissue cultures of maize (Zea mays L.). Theor Appl Genet 66:285–289

    CAS  PubMed  Google Scholar 

  • Marty F (1999) Plant vacuoles. Plant Cell 11:587–599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Mutanyatta J, Matapa PG, Shushu DD, Abegaz BM (2003) Homoisoflavonoids and xanthones from the tubers of wild and in vitro regenerated Ledebouria graminifolia and cytotoxic activities of some of the homoisoflavonoids. Phytochemistry 62:794–804

    Article  Google Scholar 

  • Nasircilar AG, Mirci S, Karaguzel O, Eren O, Baktir I (2011) In vitro propagation of endemic and endangered Muscari mirum from different explant types. Turk J Bot 35:37–43

    CAS  Google Scholar 

  • Orczyk W, Przetakiewicz J, Nadolska-Orczyk A (2003) Somatic hybrids of Solanum tuberosum—application to genetics and breeding. Plant Cell Tissue Organ Cult 74:1–13

    Article  CAS  Google Scholar 

  • Pohl T, Koorbanally C, Crouch NR, Mulholland D (2001) Secondary metabolites of Scilla plumbea, Ledebouria cooperi and Ledebouria ovatifolia (Hyacinthaceae). Biochem Syst Ecol 29:857–860

    Article  CAS  PubMed  Google Scholar 

  • Quiroz-Figueroa FR, Fuentes-Cerda CFJ, Rojas-Herrera R, Loyola-Vargas VM (2002) Histological studies on the developmental stages and differentiation of two different somatic embryogenesis systems of Coffea arabica. Plant Cell Rep 20:1141–1149

    Article  CAS  Google Scholar 

  • Ramachandra RS, Ravishankar GA (2002) Plant cell cultures: chemical factories of secondary metabolites. Biotechnol Adv 20:101–153

    Article  Google Scholar 

  • SANBI (2015) Statistics: red list of South African plants version 2015.1. http://redlist.sanbi.org/genus.php?genus=3800-10

  • Sarkar D, Naik PS (2000) Phloroglucinol enhances growth and rate of axillary shoot proliferation in potato shoot tip cultures in vitro. Plant Cell Tissue Organ Cult 60:139–149

    Article  CAS  Google Scholar 

  • Seldimirova QA, Kruglova NN (2013) Properties of the initial stages of embryoidogenesis in vitro in wheat calli of various origin. Biol Bull 40:447–454

    Article  Google Scholar 

  • Sharma K, Dubey S (2011) Biotechnology and conservation of medicinal plants. J Exp Sci 2:60–61

    CAS  Google Scholar 

  • Shushu DD, Comar JM, Abegaz BM (2009) Somaclonal variation in in vitro regenerated Ledebouria graminifolia (Hyacinthaceae), an indigenous bulb in Botswana and its potential exploitation as an ornamental plant. J Biol Sci 9:152–158

    Article  CAS  Google Scholar 

  • Sparg SG, Van Staden J, Jager AK (2002) Pharmacological and phytochemical screening of two Hyacinthaceae species: Scilla natalensis and Ledebouria ovatifolia. J Ethnopharmacol 80:95–101

    Article  CAS  PubMed  Google Scholar 

  • Steinmacher DA, Guerra MP, Saare-Surminski K, Lieberei R (2011) A temporary immersion system improves in vitro regeneration of peach palm through secondary somatic embryogenesis. Ann Bot 108:1463–1475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tallón CI, Porras I, Pérez-Tornero O (2012) Efficient propagation and rooting of three citrus rootstocks using different plant growth regulators. In Vitro Cell Dev Biol Plant 48:488–499

    Article  Google Scholar 

  • Teixeira da Silva JA, Dobránszki J, Ross S (2013) Phloroglucinol in plant tissue culture. In Vitro Cell Dev Biol Plant 49:1–16

    Article  CAS  Google Scholar 

  • Thompson D, Harrington F, Douglas G, Hennerty MJ, Nakhshab N, Long R (2001) Vegetative propagation techniques for oak, ash, sycamore and spruce. COFORD, Dublin

    Google Scholar 

  • Waller CP, Thumser AE, Langat MK, Crouch NR, Mulholland DA (2013) COX-2 inhibitory activity of homoisoflavanones and xanthones from the bulbs of the Southern African Ledebouria socialis and Ledebouria ovatifolia (Hyacinthaceae: Hyacinthoideae). Phytochemisty 95:284–290

    Article  CAS  Google Scholar 

  • Wang S, Yang F, Jiu L, Zhang W, Zhang W, Tian Z, Wang F (2013) Plant regeneration via somatic embryogenesis from leaf explants of Muscari armeniacum. Biotechnol Biotechnol Equip 27:4243–4247

    Article  CAS  Google Scholar 

  • Wetschnig W, Brosch U, Andriatiana J, Dutta S, Knirsch W (2013) In vitro propagation and ex situ conservation of Drimia cryptopoda and Ledebouria nossibeensis, two endangered endemic Hyacinthaceae from Madagascar. Scr Bot Belg 50:33–36

    Google Scholar 

  • Yücesan BB, Çiçek F, Gürel E (2014) Somatic embryogenesis and encapsulation of immature bulblets of an ornamental species, grape hyacinths (Muscari armeniacum Leichtlin ex Baker). Turk J Agric For 38:716–722

    Article  Google Scholar 

  • Zimmerman RH (1984) Rooting apple cultivars in vitro: interactions among light, temperature, phloroglucinol and auxin. Plant Cell Tissue Organ Cult 3:301–311

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support by the National Research Foundation (NRF), Pretoria and the University of KwaZulu-Natal, Pietermaritzburg is gratefully acknowledged. The authors are grateful to Subashen Naidu and all other Staff of the Microscopy & Microanalysis Unit (MMU), UKZN, Pietermaritzburg for microscopic assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes Van Staden.

Additional information

Editor: Jorge Canhoto

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baskaran, P., Kumari, A., Naidoo, D. et al. In vitro propagation and ultrastructural studies of somatic embryogenesis of Ledebouria ovatifolia . In Vitro Cell.Dev.Biol.-Plant 52, 283–292 (2016). https://doi.org/10.1007/s11627-016-9762-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11627-016-9762-9

Keywords

Navigation