Skip to main content
Log in

In vitro conservation of Mandevilla moricandiana (Apocynaceae): short-term storage and encapsulation–dehydration of nodal segments

In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Abstract

In vitro conservation of Mandevilla moricandiana was performed by slow-growth storage and encapsulation–dehydration. For slow-growth storage, half- and full-strength Murashige and Skoog (MS) medium and Woody Plant Medium, with or without sorbitol, mannitol, or glucose, were used to test the development of nodal segments and maintenance of plant viability after 6 mo. Recovery was performed using MS medium. The basal medium and carbon source did not interact, and only the carbon source had a significant effect on slow-growth storage and recovery. Sorbitol and glucose, individually or in combination, promoted development of plants with a low multiplication rate during the slow-growth period and a high multiplication rate during the recovery period. For encapsulation–dehydration, nonencapsulated and sodium alginate-encapsulated nodal segments were evaluated to determine their viability after storage at different temperatures. Nonencapsulated nodal segments gave 16.6% recovery after 60 d at 25°C. The effects of preculturing encapsulated nodal segments in MS medium with 0.4 or 0.75 M sucrose followed by dehydration were also tested. Capsules precultured for 48 h in the presence of 0.40 M sucrose and dehydrated to 40% moisture content showed 93.3% recovery. These conditions were then used to store capsules under different temperatures and for different lengths of time. The precultured capsules showed ca. 30% recovery after storage for 30 d at 4°C. Well-developed plantlets regenerated from encapsulated, stored nodal segments were rooted and acclimatized successfully, with 100% survival.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1.
Figure 2.
Figure 3.

References

  • Appezzato-da-Glória B, Estelita MEM (2000) The developmental anatomy of the subterranean system in Mandevilla illustris (Vell.) Woodson and M. velutina (Mart. Ex Stadelm) Woodson (Apocynaceae). Braz J Bot 23:27–35

    Google Scholar 

  • Bekheet SA (2011) In vitro conservation of date palm germplasm. In: Jain SM, Al-Khayri JM, Johnson DM (eds) Date palm biotechnology. Springer, Dordrecht, pp 337–360

    Chapter  Google Scholar 

  • Bertoni BW, Souza AV, Biondo R, França SC, Telles MPC, Pereira AMS (2010) Genetic diversity among natural populations of Mandevilla velutina. Hortic Bras 28:209–213

    Article  Google Scholar 

  • Biondo R, Soares AM, Bertoni BW, França SC, Pereira MAS (2004) Direct organogenesis of Mandevilla illustris (Vell.) Woodson and effects of its aqueous extract on the enzymatic and toxic activities of Crotalus durissus terrificus snake venom. Plant Cell Rep 22:549–552

    Article  CAS  PubMed  Google Scholar 

  • Biondo R, Souza AV, Bertoni BW, Soares AM, França SC, Pereira MAS (2007) Micropropagation, seed propagation and germplasm bank of Mandevilla velutina (Mart.) Woodson. Sci Agri (Piracicaba, Braz) 64:263–268

    CAS  Google Scholar 

  • Calixto JB, Nicolau M, Yunes RA (1985) The selective antagonism of bradykinin action on rat isolated uterus by crude Mandevilla velutina extract. Brit J Pharmacol 85:729–731

    Article  CAS  Google Scholar 

  • Chawla HS (2002) Introduction to plant biotechnology. Science Publishers Inc., Enfield

    Google Scholar 

  • Collin HA, Edward S (1998) Plant cell culture. BIOS Scientific Publishers, Oxford

    Google Scholar 

  • Cordeiro SZ, Simas NK, Henriques AB, Lage CLS, Sato A (2012) Micropropagation of Mandevilla moricandiana (A.DC.) Woodson. In Vitro Cell Dev Biol Plant 48:620–626

    Article  CAS  Google Scholar 

  • Engelmann F (2004) Plant cryopreservation: progress and perspectives. In Vitro Cell Dev Biol Plant 40:427–433

    Article  Google Scholar 

  • Faisal M, Ahmad N, Anis M (2006) In vitro plant regeneration from alginate-encapsulated microcuttings of Rauvolfia tetraphylla L. Am Eurasian J Agric Environ Sci 1:1–6

    Google Scholar 

  • Ford-Lloyd BV, Jackson MT (1991) Biotechnology and methods of conservation of plant genetic resources. J Biotechnol 17:247–256

    Article  Google Scholar 

  • Handro W, Floh EIS, Ferreira CM, Guerra MP (1988) Tissue, cell culture and micropropagation of Mandevilla velutina, a natural source of a bradykinin antagonist. Plant Cell Rep 7:564–566

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Rai MK, Singh N, Mangal M (2010) Alginate-encapsulation of shoot tips of jojoba [Simmondsia chinensis (Link) Schneider] for germplasm exchange and distribution. Physiol Mol Biol Plants 16:376–382

    Google Scholar 

  • Lloyd GB, McCown BH (1980) Commercially feasible micropropagation of mountain laurel (Kalmia latifolia) by use of shoot tip culture. Proc Int Plant Propag Soc 30:421–427

    Google Scholar 

  • Maraschin M, Carobrez SG, Persike D, Peixoto ML, Ferreira AG, Ferracin R, Verpoorte R, Fontana JD (2000) Cell wall polysaccharides from Mandevilla velutina (Apocynaceae) cultured cells: extraction and chemical structure. Carbohydr Polym 41:55–60

    Article  CAS  Google Scholar 

  • Maraschin M, Sugui JA, Wood KV, Boham C, Buchi DF, Cantao MP, Carobrez SG, Araujo PS, Peixoto ML, Verpoorte R, Fontana JD (2002) Somaclonal variations: a morphogenetic and biochemical analysis of Mandevilla velutina cultured cells. Braz J Med Biol Res 35:633–643

    Article  CAS  PubMed  Google Scholar 

  • Martins LM, Pereira MAS, França SC, Bertoni BW (2011) Micropropagação e conservação de Macrosyphonia velame (St. Hil.) Muell. Arg. em banco de germoplasma in vitro. Cienc Rural 41:454–458

    Article  CAS  Google Scholar 

  • Melo CG, Barbosa MHP, Motoike SY, Sabino MV, Ventrella MC, Peternelli LA, Oliveira MAR (2011) Preculture sugarcane tissue in sucrose supplemented culture medium to induce desiccation tolerance. Crop Breed Appl Biotechnol 11:320–329

    Article  CAS  Google Scholar 

  • Metcalfe CR, Chalke L (1950) Anatomy of the dicotyledons: leaves, stem and wood in relation to taxonomy with notes on economic uses. Clarendon, Oxford

    Google Scholar 

  • Murashige T, Skoog FA (1962) Revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Rai MK, Asthana P, Singh SK, Jaiswal VS, Jaiswal U (2009) The encapsulation technology in fruit plants—a review. Biotechnol Adv 27:671–679

    Article  PubMed  Google Scholar 

  • Rapini A, Koch I, Kinoshita LS, Simões AO, Spina AP (2010) Apocynaceae in Lista de Espécies da Flora do Brasil. Jardim Botânico do Rio de Janeiro. http://floradobrasil.jbrj.gov.br/2010/FB033698. Accessed 07 Oct 2011

  • Sá AJ, Lédo AS, Lédo CAS (2011) Conservação in vitro de mangabeira da região nordeste do Brasil. Cienc Rural 41:57–62

    Google Scholar 

  • Sakai A (2000) Development of cryopreservation techniques. In: Engelmann F, Takagi H (eds) Cryopreservation of tropical plant germplasm. IPGRI, Tsukuba, pp 1–7

    Google Scholar 

  • Sales MF, Kinoshita LS, Simões AO (2006) Eight new species of Mandevilla Lindley (Apocynaceae, Apocynoideae) from Brazil. Novon 16:113–129

    Article  Google Scholar 

  • Sarkar D, Naik PS (1998) Factors affecting minimal growth conservation of potato microplants in vitro. Euphytica 102:275–280

    Article  Google Scholar 

  • Schultes RE (1979) De Plantis Toxicariis e Mundo Novo Tropicale Comentationes. XIX. Biodynamic apocynaceous plants of the northwest Amazon. J Ethnopharmacol 1:165–192

    Article  CAS  PubMed  Google Scholar 

  • Sharma S, Shahzad A (2012) Encapsulation technology for short-term storage and conservation of a woody climber, Decalepis hamiltonii Wight and Arn. Plant Cell Tissue Organ Cult 111:191–198

    Article  CAS  Google Scholar 

  • Shibli RA, Shatnawi MA, Subaih WS, Ajlouni MM (2006) In vitro conservation and cryopreservation of plant genetic resources: a review. World J Agric Sci 2:372–382

    Google Scholar 

  • Silva TL, Scherwinski-Pereira JE (2011) In vitro conservation of Piper aduncum and Piper hispidinervum under slow-growth conditions. Pesq Agropec Bras 46:384–389

    Article  Google Scholar 

  • Singh SK, Rai MK, Asthana P, Pandey S, Jaiswal VS, Jaiswal U (2009) Plant regeneration from alginate-encapsulated shoot tips of Spilanthes acmella (L.) Murr., a medicinally important and herbal pesticidal plant species. Acta Physiol Plant 31:649–653

    Article  CAS  Google Scholar 

  • Singh SK, Rai MK, Asthana P, Sahoo L (2010) Alginate-encapsulation of nodal segments for propagation, short-term conservation and germplasm exchange and distribution of Eclipta alba (L.). Acta Physiol Plant 32:607–610

    Article  Google Scholar 

  • Subaih WS, Shatnawi MA, Shibli RA (2007) Cryopreservation of date palm (Phoenix dactylifera) embryogenic callus by encapsulation-dehydration, vitrification, and encapsulation-vitrification. Jordan J Agric Sci 3:156–171

    Google Scholar 

  • Sundararaj SC, Agrawal A, Tyagi RK (2010) Encapsulation for in vitro short-term storage and exchange of ginger (Zingiber officinale Rosc.) germplasm. Sci Hortic 125:761–766

    Article  CAS  Google Scholar 

  • Vasil IK (1991) Plant tissue culture and molecular biology as tools in understanding plant development and in plant improvement. Curr Opin Biotechnol 2:158–163

    Article  CAS  Google Scholar 

  • Villalobos VM, Ferreira P, Mora A (1991) The use of biotechnology in the conservation of tropical germplasm. Biotechnol Adv 9:197–215

    Article  CAS  PubMed  Google Scholar 

  • Wang QC, Batuman O, Li P, Bar-Joseph M, Gafny R (2002) A simple and efficient cryopreservation of in vitro-grown shoot tips of ‘Troyer’ citrange [Poncirus trifoliata Raf. × Citrus sinensis (L.) Osbeck.] by encapsulation-dehydration. Plant Cell Rep 20:901–906

    Article  CAS  Google Scholar 

  • West TP, Preece JE (2009) Bulk alginate encapsulation of Hibiscus moscheutos nodal segments. Plant Cell Tissue Organ Cult 97:345–351

    Article  Google Scholar 

  • Wiersema JH, León B (1999) World economic plants: a standard reference. CRC, Boca Raton

    Google Scholar 

  • Woodson RE Jr (1933) Studies in the Apocynaceae. IV. The American genera of the Echitoideae. Ann Missouri Bot Gard 20:605–790

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank CAPES (Conselho de Administração de Pessoal de Ensino Superior) for a doctoral scholarship for the first author; PBV-UFRJ (Programa de Pós-graduação em Biotecnologia Vegetal, Universidade Federal do Rio de Janeiro) and FAPERJ (Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro) for their financial support; Prof. Dr. Tatiana Ungaretti Paleo Konno of UFRJ-Macaé for providing seeds of M. moricandiana; taxonomists Prof. Dr. Jorge Fontella Pereira of Museu Nacional (UFRJ), MSc. Marcelo Fraga Castilhiori, and Inaldo do Espírito Santo of Herbarium Bradeanum for species identification; Prof. Dr. Aline Vieira Santos (PBV-UFRJ) for valuable assistance with encapsulation–dehydration protocols; Universidade Federal do Estado do Rio de Janeiro (UNIRIO) for providing transport to the collection areas; the Brazilian Institute for Environment and Natural Renewable Resources (IBAMA) for authorization to collect (Scientific Research Activities no. 18498–1); and specially to Dr. Randall P. Niedz (US Horticultural Research Laboratory) and to the editor of this Journal, Dr. John J. Finer, for their valuable contributions and suggestions to improve this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandra Zorat Cordeiro.

Additional information

Editor: Randy Niedz

This study is part of doctoral thesis of the first author

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cordeiro, S.Z., Simas, N.K., Henriques, A.B. et al. In vitro conservation of Mandevilla moricandiana (Apocynaceae): short-term storage and encapsulation–dehydration of nodal segments. In Vitro Cell.Dev.Biol.-Plant 50, 326–336 (2014). https://doi.org/10.1007/s11627-014-9600-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11627-014-9600-x

Keywords

Navigation