Skip to main content
Log in

Regeneration of transgenic Picea glauca, P. Mariana, and P. abies after cocultivation of embryogenic tissue with Agrobacterium tumefaciens

  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Summary

Transgenic plants of three Picea species were produced after coculture of embryogenic tissue with the disarmed strain of Agrobacterium tumefaciens C58/pMP90/pBIV10 and selection on medium containing kanamycin. In addition to the nptII selectable gene (conferring resistance to kanamycin), the vector carried the uidA (β-glucuronidase) marker gene. Transformation frequencies were dependent on the species, genotype, and post-cocultivation procedure. Of the three species tested, P. mariana was transformed at the highest frequency, followed by P. glauca and P. abies. The transgenic state of the embryogenic tissue was initially, confirmed by histochemical β-glucuronidase (GUS) assay followed by Southern hybridization. One to over five copies of T-DNA were detected in various transgenic lines analyzed. Transgenic plants were regenerated for all species using modified protocols for maturation and germination of somatic embryos.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Birch, R. G. Plant transformation: problems and strategies for practical application. Annu. Rev. Plant Physiol. Plant Mol. Biol. 48:297–326 1997.

    Article  PubMed  CAS  Google Scholar 

  • Campbell, R. A.; Durzan, D. J. Induction of multiple buds and needles in tissue cultures of Picea glauca. Can. J. Bot. 53:1652–1657; 1975.

    CAS  Google Scholar 

  • Charest, P. J.; Devantier, Y.; Lachance, D. Stable genetic transformation of Picea mariana (black spruce) via particle bombardment. In Vitro Cell. Dev. Biol. Plant 32:91–99; 1996.

    Article  Google Scholar 

  • Clapham, D.; Demel, P.; Elfstrand, M.; Koop, H.-U.; Sabala, I.; von Arnold, S. Gene transfer by particle bombardment to embryogenic cultures of Picea abies and the production of transgenic plantlets. Scand. J. For. Res. 15:151–160; 2000.

    Article  Google Scholar 

  • Datla, R. S. S.; Bekkaoui, F.; Hammerlindl, J. K.; Pilate, G.; Dunstan, D. I.; Crosby, W. L. Improved high-level constitutive foreign gene expression in plants using an AMV RNA4 untranslated leader sequence. Plant Sci. 94:139–149; 1993.

    Article  CAS  Google Scholar 

  • Datla, R. S. S.; Hammerlindl, J. K.; Pelcher, L. E.; Crosby, W. L.; Selvaraj, G. A bifunctional fusion between β-glucuronidase and neomycin phosphotransferase: a broad-spectrum marker enzyme for plants. Gene 101:239–246; 1991.

    Article  PubMed  CAS  Google Scholar 

  • De Buck, S.; De Wilde, C.; Van Montagu, M.; Depicker, A. Determination of the T-DNA transfer and T-DNA integration frequencies upon cocultivation of Arabidopsis thaliana root explants. Mol. Plant-Microbe Interact. 6:658–665; 2000.

    Google Scholar 

  • De Neve, M.; De Buck, S.; Jacobs, A.; Van Montagu, M.; Depicker, A. T-DNA integration patterns in co-transformed plant cells suggest that T-DNA repeats originate from co-integration of separate T-DNAs. Plant J. 11:15–29; 1997.

    Article  PubMed  Google Scholar 

  • Ellis, D. D. Transformation of gymnosperms.. In: Jain, S. M., Gupta, P. K., Newton, R. J., eds. Somatic embryogenesis in woody plants. Dordrecht, Kluwer Academic Publishers; 1995;227–247.

    Google Scholar 

  • Ellis, D. D.; McCabe, D. E.; McInnis, S.; Ramachandran R.; Russell, D. R.; Wallace, K. M.; Martinell, B. J.; Roberts, D. R.; Raffa, K. F.; McCown, B. H. Stable transformation of Picea glauca by particle acceleration. Bio/Technology 11:84–89; 1993.

    Article  CAS  Google Scholar 

  • Garin, E.; Bernier-Cardou, M.; Isabel, N.; Klimaszewska, K.; Plourde, A. Effect of sugars, amino acids, and culture technique on maturation of somatic embryos of Pinus strobus on medium with two gellan gum concentrations. Plant Cell Tiss. Organ Cult. 62:27–37; 2000.

    Article  CAS  Google Scholar 

  • Holland, L.; Gemmell, J. E.; Charity, J. A.; Walter, C. Foreign gene transfer into Pinus radiata cotyledons by Agrobacterium tumefaciens N.Z.J. For. Sci. 27:289–304; 1997.

    CAS  Google Scholar 

  • Huang, Y.; Diner, A. M.; Karnosky, D. F. Agrobacterium rhizogenes-mediated genetic transformation and regeneration of a conifer: Larix decidua In Vitro Cell. Dev. Biol. Plant 27:201–207; 1991.

    Google Scholar 

  • Humara, J. M.; López, M.; Ordás, R. J. Agrobacterium tumefaciens-mediated transformation of Pinus pinea L. cotyledons: an assessment of factors influencing the efficiency of uidA gene transfer. Plant Cell Rep. 19:51–58; 1999a.

    Article  CAS  Google Scholar 

  • Humara, J. M.; Marin, M. S.; Parra, F.; Ordás, R. J. Improved efficiency of uidA gene transfer in stone pine (Pinus pinea) cotyledons using a modified binary vector. Can. J. For. Res. 29:1627–1632; 1999b.

    Article  CAS  Google Scholar 

  • Jefferson, R. A. Assaying chimeric genes in plants: the GUS gene fusion system. Plant Mol. Biol. Rep. 5:387–405; 1987.

    CAS  Google Scholar 

  • Klimaszewska, K.; Devantier, Y.; Lachance, D.; Lelu, M. A.; Charest, P. J. Larix laricina (tamarack): somatic embryogenesis and genetic transformation. Can. J. For. Res. 27:538–550; 1997.

    Article  Google Scholar 

  • Klimaszewska, K.; Park, Y.-S.; Overton, C.; MacEacheron, I.; Bonga, J. M. Optimized somatic embryogenesis in Pinus strobus L In Vitro Cell. Dev. Biol. Plant 37:392–399; 2001.

    Google Scholar 

  • Klimaszewska, K.; Smith, D. R. Maturation of somatic embryos of Pinus strobus is promoted by a high concentration of gellan gum. Physiol. Plant 100:949–957; 1997.

    Article  CAS  Google Scholar 

  • Koncz, C.; Schell, J. The promoter of TL-DNA gene 5 controls the tissuespecific expression of chimaeric genes carried by a novel type of Argobacterium binary vector. Mol. Gen. Genet. 204:383–396.; 1986.

    Article  CAS  Google Scholar 

  • Lelu, M. A.; Pilate, C. Transgenic in Larix. In: Jain, S. M., Minocha, S. C., eds. Molecular biology of woody plants, vol 2. Dordrecht: Kluwe Academic Publisheres; 2000:119–134.

    Google Scholar 

  • Levée, V.; Garin, E.; Klimaszewska, K.; Séguin, A. Stable genetic transformation of white pine (Pinus strobus L.) after cocultivation of embryogenic tissues with Agrobacterium tumefaciens. Mol. Breed. 5:429–440; 1999.

    Article  Google Scholar 

  • Levée, V.; Lelu, M.-A.; Jouanin, L.; Cornu, D.; Pilate, G. Agrobacterium tumefaciens-mediated transformation of hybrid blarch (Larix kaempferi XL decidua) and transgenic plant regeneration. Plant Cell Rep. 16:680–685; 1997.

    Article  Google Scholar 

  • Litvay, J. D.; Verma, D. C.; Johnson, M. A. Influence of a loblolly pine (Pinus taeda L.) culture medium and its components on growth and somatic embryogenesis of the wild carrot (Daucus carota L) Plant Cell Rep. 4:325–328; 1985.

    Article  CAS  Google Scholar 

  • Robertson, D.; Weissinger, A. K.; Ackley, R.; Glover, S.; Sederoff, R. R. Genetic transformation of Norway spruce (Picea abies (L.) Karst.) using somatic embryo explants by microprojectile bombardment. Plant Mol. Biol. 19:925–935; 1992.

    Article  PubMed  CAS  Google Scholar 

  • Tepfer, M.; Casse-Delbart, F. Agrobacterium rhizogenes as the vector for transforming higher plants. Microbiol. Sci. 4:24–28; 1987.

    PubMed  CAS  Google Scholar 

  • Tian, L.-N.; Charest, P. J.; Séguin, A.; Rutledge, R. G. Hygromycin resistance is an effective selectable marker for biolistic transformation of black spruce (Picea mariana). Plant Cell Rep. 19:358–362; 2000.

    Article  CAS  Google Scholar 

  • Tzfira, T.; Yarnitzky, O.; Vainstein, A.; Altman, A. Agrobacterium rhizogenes-mediated DNA transfer in Pinus halepensis Mill. Plant Cell Rep. 16:26–31; 1996.

    CAS  Google Scholar 

  • Walter, C.; Crace, L. J.; Donaldson, S. S.; Moody, J.; Gemmell, J. E.; van der Maas, S.; Kvaalen, H.; Lonneborg, A. An efficient Biolistic® transformation protocol for Picea abies embryogenic tissue and regeneration of transgenic plants. Can. J. For. Res. 29:1539–1546; 1999.

    Article  Google Scholar 

  • Walter, C.; Grace, L. J.; Wagner, A.; White, D. W. R.; Walden, A. R.; Donaldson, S. S.; Hinton, H.; Gardner, R. C.; Smith, D. R. Stable transformation and regeneration of transgenic plants of Pinus radiata D. Don. Plant Cell Rep. 17:460–468; 1998.

    Article  CAS  Google Scholar 

  • Wenck, A. R.; Quinn, M.; Whetten, R. W.; Pullman, G.; Sederoff, R. High-efficiency Agrobacterium-mediated transformation of Norway spruce (Picea abies) and loblolly pine (Pinus taeda). Plant Mol. Biol. 39:407–416; 1999.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krystyna Klimaszewska.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klimaszewska, K., Lachance, D., Pelletier, G. et al. Regeneration of transgenic Picea glauca, P. Mariana, and P. abies after cocultivation of embryogenic tissue with Agrobacterium tumefaciens . In Vitro Cell.Dev.Biol.-Plant 37, 748–755 (2001). https://doi.org/10.1007/s11627-001-0124-9

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11627-001-0124-9

Key words

Navigation