Skip to main content

Advertisement

Log in

Msx-1 gene expression and regulation in embryonic palatal tissue

  • Growth, Differentiation And Senescence
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Summary

The palatal cleft seen in Msx-1 knock-out mice suggests a role for this gene in normal palate development. The cleft is presumed secondary to tooth and jaw malformations, since in situ hybridization suggests that Msx-1 mRNA is not highly expressed in developing palatal tissue. In this study we demonstrate, by Northern blot analysis, the expression of Msx-1, but not Msx-2, in the developing palate and in primary cultures of murine embryonic palate mesenchymal cells. Furthermore, we propose a role for Msx-1 in retinoic acid-induced cleft palate, since retinoic acid inhibits Msx-1 mRNA expression in palate mesenchymal cells. We also demonstrate that transforming growth factor beta inhibits Msx-1 mRNA expression in palate mesenchymal cells, with retinoic acid and transforming growth factor beta acting synergistically when added simultaneously to these cells. These data suggest a mechanistic interaction between retinoic acid, transforming growth factor beta, and Msx-1 in the etiology of retinoic acid-induced cleft palate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Abbott, B.; Pratt, R. Influence of retinoids and EGF on growth of embryonic mouse palatal epithelia in culture. In Vitro Cell. Dev. Biol. 24:343–352; 1988.

    Article  PubMed  CAS  Google Scholar 

  2. Barlow, A. J.; Francis-West, P. H. Ectopic application of recombinant BMP-2 and BMP-4 can change patterning of developing chick facial primordia. Development 124:391–398; 1997.

    PubMed  CAS  Google Scholar 

  3. Bell, J. R.; Noveen, A.; Liu, Y. H., et al. Genomic structure, chromosomal location, and evolution of the mouse Hox 8 gene. Genomics 16:123–131; 1993.

    Article  PubMed  CAS  Google Scholar 

  4. Brandon, E. P.; Idzerda, R. L.; McKnight, G. S. Targeting the mouse genome: a compendium of knockouts. Curr. Biol. 5:1–27; 1995.

    Article  Google Scholar 

  5. Brown, J. M.; Robertson, K. E.; Wedden, S. E., et al. Alterations in Msx 1 and Msx 2 expression correlate with inhibition of outgrowth of chick facial primordia induced by retinoic acid. Anat. Embryol. 195:203–207; 1997.

    Article  PubMed  CAS  Google Scholar 

  6. Chomczynski, P.; Saachi, N. Single-step method of RNA isolation by acid guanidium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 162:156–159; 1987.

    Article  PubMed  CAS  Google Scholar 

  7. Coelho, C. N. D.; Upholt, W. B.; Kosher, R. A. The expression pattern of the chicken homeobox-containing gene GHox-7 in developing polydactylous limb buds suggests its involvement in apical ectodermal ridge-directed outgrowth of limb mesoderm and in programmed cell death. Differentiation 52:129–137; 1993.

    Article  PubMed  CAS  Google Scholar 

  8. Davidson, D. The function and evolution of Msx genes: pointers and paradoxes. Trends Genet. 11:405–411; 1995.

    Article  PubMed  CAS  Google Scholar 

  9. Davidson, D.; Hill, R. E. Msh-like genes: a family of homeobox genes with wide-ranging expression during vertebrate development. Sem. Dev. Biol. 2:405–412; 1991.

    Google Scholar 

  10. Dolle, P.; Fraulob, V.; Kastner, P., et al. Developmental expression of murine retinoid X receptor (RXR) genes. Mech. Dev. 45:91–104; 1994.

    Article  PubMed  CAS  Google Scholar 

  11. Dolle, P.; Ruberte, E.; Kastner, P., et al. Differential expression of genes encoding α, β and γ retinoic acid receptors and CRABP in the developing limbs of the mouse. Nature 342:702–705; 1989.

    Article  PubMed  CAS  Google Scholar 

  12. Ferguson, M. W. J. Craniofacial malformations: towards a molecular understanding. Nature Genet. 6:329–330; 1995.

    Article  Google Scholar 

  13. Fitzpatrick, D.; Abbott, B; Akhurst, R. Palatal expression of TGF-B isoforms and retinoic acid-treated mouse embryos In: Morris-Kay, G., ed. Retinoids in normal development and teratogenesis. Oxford: Oxford University Press; 1992:149–164.

    Google Scholar 

  14. Foerst-Potts, L.; Sadler, T. W. Disruption of Msx-1 and Msx-2 reveals roles for these genes in craniofacial, eye, and axial development. Dev. Dyn. 209:70–84; 1997.

    Article  PubMed  CAS  Google Scholar 

  15. Hill, R. E.; Jones, P. F.; Rees, A. R., et al. A new family of homeo box-containing genes: molecular structure, chromosomal location, and developmental expression of Hox-7.1. Genes Dev. 3:26–37; 1989.

    PubMed  CAS  Google Scholar 

  16. Hofmann, C.; Eichele, G. Retinoids in development. In: Sporn, M. B.; Roberts, A. B.; Goodman, D. S., ed. The retinoids. New York: Raven Press, Ltd.; 1994:387–442.

    Google Scholar 

  17. Jowett, A. K.; Vainio, S.; Ferguson, M. W. J., et al. Epithelial-mesenchymal interactions are required for msx 1 and msx 2 gene expression in the developing murine tooth. Development 117:461–470; 1993.

    PubMed  CAS  Google Scholar 

  18. Kerr, L.; Miller, D.; Martrisian, L. TGF-β1 inhibition of transin/stromelysin gene expression is mediated through a fos binding sequence. Cell 6:267–278; 1990.

    Article  Google Scholar 

  19. Kochhar, D.; Johnson, E. J. Morphological and autoradiographic studies of cleft palate induced embryos by maternal hypervitaminosis A. Embryol. Exp. Morphol. 14:223–238; 1965.

    CAS  Google Scholar 

  20. Kuzoka, M.; Takahashi, T.; Guron, C., et al. Murine homeobox- containing gene, MSX-1: analysis of genomic organization, promoter structure, and potential autoregulatory cis-acting elements. Genomics 21:85–94; 1994.

    Article  Google Scholar 

  21. Lammer, E. J.; Chen, D. T.; Hoar, R. M., et al. Retinoic acid embryopathy. N. Engl. J. Med. 313:837–841; 1985.

    Article  PubMed  CAS  Google Scholar 

  22. Leid, M.; Kastner, P.; Durand, B., et al. Retinoic acid signal transduction pathways. Ann. NY Acad. Sci. 684:19–34; 1993.

    Article  PubMed  CAS  Google Scholar 

  23. Lohnes, D.; Mark, M.; Mendelsohn, C., et al. Developmental roles of the retinoic acid receptors. J. Steroid Biochem. Mol. Biol. 53:475–486; 1995.

    Article  PubMed  CAS  Google Scholar 

  24. Lyons, G. E.; Houzelstein, D.; Sassoon, D., et al. Multiple sites of Hox-7 expression during mouse embryogenesis: comparison with retinoic acid receptor mRNA localization. Mol. Reprod. Dev. 32:303–314; 1992.

    Article  PubMed  CAS  Google Scholar 

  25. Mackenzie, A.; Ferguson, M. W. J.; Sharpe, P. T. Hox-7 expression during murine craniofacial development. Development 113:601–611; 1991.

    PubMed  CAS  Google Scholar 

  26. Mackenzie, A.; Ferguson, M. W.; Sharpe, P. T. Expression patterns of the homeobox gene, hox-8, in the mouse embryo suggest a role in specifying tooth initiation and shape. Development 115:403–420; 1992.

    PubMed  CAS  Google Scholar 

  27. Mackenzie, A.; Leeming, G. L.; Jowett, A. K., et al. The homeobox gene hox 7.1 has specific regional and temporal expression patterns during early murine craniofacial embryogenesis, especially tooth development in vivo and in vitro. Development 111:269–285; 1991.

    PubMed  CAS  Google Scholar 

  28. Mangelsdorf, D.; Kliewer, S.; Kakizuka, A., et al. Retinoid receptors. Recent Prog. Horm. Res. 48:99–121; 1993.

    PubMed  CAS  Google Scholar 

  29. Mina, M.; Gluhak, J.; Upholt, W. B., et al. Experimental analysis of msx-1 and msx-2 gene expression during chick mandibular morphogenesis. Dev. Dyn. 202:195–214; 1995.

    PubMed  CAS  Google Scholar 

  30. Morriss-Kay, G. Retinoic acid and development. Pathobiology 60:264–270; 1992.

    Article  PubMed  CAS  Google Scholar 

  31. Nugent, P.; Greene, R. M. Interactions between the transforming growth factor beta (TGF-β) and retinoic acid signal transduction pathways in murine embryonic palatal cells. Differentiation 58:149–155; 1994.

    Article  PubMed  CAS  Google Scholar 

  32. Nugent, P.; Potchinsky, M.; Lafferty, C., et al. TGF-β modulates the expression of retinoic acid-induced RAR-β in primary cultures of embryonic palate cells. Exp. Cell Res. 220:495–500; 1995.

    Article  PubMed  CAS  Google Scholar 

  33. Rifas, L.; Towler, D. A.; Avioli, L. V. Gestational exposure to ethanol suppresses msx2 expression in developing mouse embryos. Proc. Natl. Acad. Sci. 94:7549–7554; 1997.

    Article  PubMed  CAS  Google Scholar 

  34. Robert, B.; Sassoon, D.; Jacq, B., et al. Hox-7, a mouse homeobox gene with a novel pattern of expression during embryogenesis. EMBO J. 8:91–100; 1989.

    PubMed  CAS  Google Scholar 

  35. Roberts, A. B.; Flanders, K. C.; Kondaiah, P., et al. Transforming growth factor β: biochemistry and roles in embryogenesis, tissue repair and remodeling, and carcinogenesis. Recent Prog. Horm. Res. 44:157–195; 1988.

    PubMed  CAS  Google Scholar 

  36. Rothman, K. J.; Moore, L. L.; Singer, M., et al. Teratogenicity of high vitamin A intake. N. Engl. J. Med. 333:1369–1415; 1995.

    Article  PubMed  CAS  Google Scholar 

  37. Satokata, I.; Maas, R. Msx1 deficient mice exhibit cleft palate and abnormalities of craniofacial and tooth development. Nat. Genet. 6:348–356; 1994.

    Article  PubMed  CAS  Google Scholar 

  38. Tabin, C. The initiation of the limb bud: growth factors, hox genes, and retinoids. Cell 80:671–674; 1995.

    Article  PubMed  CAS  Google Scholar 

  39. Turecková, J.; Sahlberg, C.; Åberg, T., et al. Comparison of expression of the msx-1, msx-2, BMP-2 and BMP-4 genes in the mouse upper diastemal and molar tooth primordia. Int. J. Dev. Biol. 39:459–468; 1995.

    PubMed  Google Scholar 

  40. Wang, Y.; Sasson, D. Ectoderm-mesenchyme and mesenchyme-mesenchyme interactions regulate Msx-1 expression and cellular differentiation in the murine limb bud. Dev. Biol. 168:374–382; 1995.

    Article  PubMed  CAS  Google Scholar 

  41. Whiting, J. Craniofacial abnormalities induced by the ectopic expression of homeobox genes. Mutat. Res. 396:97–112; 1997.

    PubMed  CAS  Google Scholar 

  42. Yokouchi, Y.; Oshugi, K.; Sasaki, H., et al. Chicken homeobox gene Msx-1: structure, expression in limb buds and effect of retinoic acid. Development 113:431–444; 1991.

    PubMed  CAS  Google Scholar 

  43. Yoshikawa, H.; Kukita, T.; Kurisu, K., et al. Effect of retinoic acid on in vitro proliferation activity and glycosaminoglycan synthesis of mesenchymal cells from palatal shelves of mouse fetuses. J. Craniofac. Gen. Dev. Biol. 7:45–51; 1987.

    PubMed  CAS  Google Scholar 

  44. Zelent, A.; Krust, A.; Petkovich, M., et al. Cloning of murine α and β retinoic acid receptors and a novel receptor γ predominantly expressed in skin. Nature 339:714–717; 1989.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nugent, P., Greene, R.M. Msx-1 gene expression and regulation in embryonic palatal tissue. In Vitro Cell.Dev.Biol.-Animal 34, 831–835 (1998). https://doi.org/10.1007/s11626-998-0038-5

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-998-0038-5

Key words

Navigation