Skip to main content
Log in

An in vitro approach for the characterization of the cycling B cell response

  • Immunology
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Summary

Because isolation of sufficient numbers of cycling, germinal center B cells from mice for biochemical characterization of BCR-derived signals can be problematic, we have designed an experimental approach for generating large numbers of cycling B cells for further study. In the experiments reported here, small, resting B cells were polyclonally stimulated with lipopolysaccharide (LPS), and cycling B cells isolated as two bands on three-step Percoll gradients. Cycling B cells isolated at Days 2, 4, or 6 of preactivation showed an increased expression of Fas receptor and peanut agglutinin binding, with a concomitant decrease in sIgD positivity. These cells phenotypically resembled extrafollicular or early germinal center B cells. These cycling B cells were used to study the functional consequences of differential signaling through the BCR. Strong cross-linking of BCR, by restimulation of cycling normal B cells with either immobilized or soluble F(ab’)2 anti-μ and cycling hen egg lysozyme (HEL) transgenic B cells with either soluble or immobilized HEL, extended cellular proliferation by 2–3 d. In contrast, cycling B cells either restimulated with soluble, whole anti-μ (to mimic binding of soluble immune complexes) or cultured in the absence of restimulation (to mimic cycling B cells not competitive for antigen) resulted in the rapid exit of the cells from cycle. This system will enable the molecular and biochemical characterization of signal delivery to cycling B cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arpin, C.; Dechanet, J.; Van Kooten, C., et al. Generation of memory cells and plasma cells in vitro. Science 268:720–722; 1995.

    Article  PubMed  CAS  Google Scholar 

  2. Burton, G. F.; Conrad, D. H.; Szakal, A. K., et al. Follicular dendritic cells and B cell costimulation. J. Immunol. 150:31–38; 1993.

    PubMed  CAS  Google Scholar 

  3. Cambier, J. C. Antigen and Fc receptor signaling. The awesome power of the immunoreceptor tyrosine-based activation motif (ITAM). J. Immunol. 155:3281–3285; 1995.

    PubMed  CAS  Google Scholar 

  4. Galibert, L.; Burdin, N.; de Saint-Vis, B., et al. CD40 and B cell antigen receptor dual triggering of resting B lymphocytes turns on a partial germinal center phenotype. J. Exp. Med. 183:77–85; 1996.

    Article  PubMed  CAS  Google Scholar 

  5. Goodnow, C. C.; Crosbie, J.; Adelstein, S., et al. Altered immunoglobulin expression and functional silencing of self-reactive B lymphocytes in transgenic mice. Nature 334:676–682; 1988.

    Article  PubMed  CAS  Google Scholar 

  6. Gray, D. Recruitment of virgin B cells into an immune response is restricted to activation outside lymphoid follicles. Immunology 65:73–79; 1988.

    PubMed  CAS  Google Scholar 

  7. Grouard, G.; de Bouteiller, O.; Banchereau, J., et al. Human follicular dendritic cells enhance cytokine-dependent growth and differentiation of CD40-activated B cells. J. Immunol. 155:3345–3352; 1995.

    PubMed  CAS  Google Scholar 

  8. Hardie, D. L.; Johnson, G. D.; Khan, M., et al. Quantitative analysis of molecules which distinguish functional compartments within germinal centers. Eur. J. Immunol. 23:997–1004; 1993.

    Article  PubMed  CAS  Google Scholar 

  9. Kelsoe, G. In situ studies of the germinal center reaction. Adv. Immunol. 60:267–288; 1995.

    Article  PubMed  CAS  Google Scholar 

  10. Kelsoe, G. Life and death in germinal centers (redux). Immunity 4:107–111; 1996.

    Article  PubMed  CAS  Google Scholar 

  11. Kiener, P. A.; Lioubin, M. N.; Rohrschneider, L. R., et al. Co-ligation of the antigen and Fc receptors gives rise to the elective modulation of intracellular signaling in B cells. Regulation of the association of phosphatidylinositol 3-kinase and inositol 5’-phosphatase with the antigen receptor complex. J. Biol. Chem. 272:3838–3844; 1997.

    Article  PubMed  CAS  Google Scholar 

  12. Kim, H.-S.; Zhang, X.; Klyushnenkova, E., et al. Stimulation of germinal center B lymphocyte proliferation by an FDC-like cell line, HK. J. Immunol. 155:1101–1109; 1995.

    CAS  Google Scholar 

  13. Kosco, M. H.; Pflugfelder, E.; Gray, D. Follicular dendritic cell-dependent adhesion and proliferation of B cells in vitro. J. Immunol. 148:2331–2339; 1992.

    PubMed  CAS  Google Scholar 

  14. Lindhout, E.; Lakeman, A.; de Groot, C. Follicular dendritic cells inhibit apoptosis in human B lymphocytes by a rapid and irreversible blockade of preexisting endonuclease. J. Exp. Med. 181:1985–1995; 1995.

    Article  PubMed  CAS  Google Scholar 

  15. Linton, P.-J.; Klinman, N. R. The generation of memory B cells. Sem. Immunol. 4:3–9; 1992.

    CAS  Google Scholar 

  16. Liu, Y.-J.; Joshua, D. E.; Williams, G. T., et al. Mechanism of antigendriven selection in germinal centres. Nature 342:929–931; 1989.

    Article  PubMed  CAS  Google Scholar 

  17. Oliver, A. M.; Martin, F.; Kearney, J. F. Mouse CD38 is down- regulated on germinal center B cells and mature plasma cells. J. Immunol. 158:1108–1115; 1997.

    PubMed  CAS  Google Scholar 

  18. Oprea, M.; Perelson, A. S. Somatic mutation leads to efficient affinity maturation when centrocytes recycle back to centroblasts. J. Immunol. 158:5155–5162; 1997.

    PubMed  CAS  Google Scholar 

  19. Pardee, A. G1 events and regulation of cell proliferation. Science 246:603–608; 1989.

    Article  PubMed  CAS  Google Scholar 

  20. Reddy, G. P. V. Cell cycle: regulatory events in G1→S transition of mammalian cells. J. Cell. Biochem. 54:379–386; 1994.

    Article  PubMed  CAS  Google Scholar 

  21. Reid, S.; Cross, R.; Snow, E. C. Combined Hoechst 33342 and merocyanine 540 staining to examine murine B cell cycle stage, viability and apoptosis. J. Immunol. Methods 192:43–54; 1996.

    Article  PubMed  CAS  Google Scholar 

  22. Renno, T.; Hahne, M.; Tschopp, J., et al. Peripheral T cells undergoing superantigen-induced apoptosis in vivo express B220 and upregulate Fas and Fas ligand. J. Exp. Med. 183:431–437; 1996.

    Article  PubMed  CAS  Google Scholar 

  23. Sherr, C. J. Mammalian G1 cyclins. Cell 73:1059–1065; 1993.

    Article  PubMed  CAS  Google Scholar 

  24. Smith, K. G. C.; Hewitson, T. D.; Nossal, G. J. V., et al. The phenotype and fate of the antibody-forming cells of the splenic foci. Eur. J. Immunol. 26:444–448; 1996.

    Article  PubMed  CAS  Google Scholar 

  25. Thomas, M. L. Of ITAMs and ITIMs: turning on and off the B cell antigen receptor. J. Exp. Med. 181:1953–1956; 1995.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pittner, B.T., Mullins, M.W., Reid, S. et al. An in vitro approach for the characterization of the cycling B cell response. In Vitro Cell.Dev.Biol.-Animal 34, 421–429 (1998). https://doi.org/10.1007/s11626-998-0024-y

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-998-0024-y

Key words

Navigation