Skip to main content
Log in

Characterization of flounder (Paralichthys olivaceus) FoxD3 and its function in regulating myogenic regulatory factors

  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Abstract

As one member of winged helix domain transcription factors, FoxD3 plays an important role in the regulation of neural crest development and maintenance of mammalian stem cell lineages. A recent study showed that zebrafish FoxD3 is a downstream gene of Pax3 and can mediate the expression of Myf5. To further understand the function of FoxD3 in fish muscle development, we isolated the FoxD3 gene from flounder, and analyzed its expression pattern and function in regulating myogenic regulatory factors, MyoD and Myf5. In situ hybridization showed that flounder FoxD3 was firstly detected in the premigratory neural crest cells at 90% epiboly stage. The FoxD3 was expressed not only in neural crest cells but also in somite cells that will form muscle in the future. When flounder FoxD3 was over-expressed in zebrafish by microinjection, the expressions of zebrafish Myf5 and MyoD were both affected. It is possible that FoxD3 is involved in myogenesis by regulating the expression of Myf5 and MyoD. Also, over-expression of flounder FoxD3 in zebrafish inhibits the expression of zebrafish endogenic FoxD3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1.
Figure 2.
Figure 3.

Similar content being viewed by others

References

  • Buckingham M. Skeletal muscle formation in vertebrates. Curr. Opin. Genet. Dev. 11: 440–448; 2001.

    Article  PubMed  CAS  Google Scholar 

  • Carlsson P.; Mahlapuu M. Forkhead transcription factors: key players in development and metabolism. Dev. Biol. 250: 1–23; 2002.

    Article  PubMed  CAS  Google Scholar 

  • Dottori M.; Gross M. K.; Labosky P.; Goulding M. The winged-helix transcription factor Foxd3 suppresses interneuron differentiation and promotes neural crest cell fate. Development 128: 4127–4138; 2001.

    PubMed  CAS  Google Scholar 

  • Du S. J.; Dienhart M. Gli2 mediation of hedgehog signals in slow muscle induction in zebrafish. Differentiation 67: 84–91; 2001.

    Article  PubMed  CAS  Google Scholar 

  • Freyaldenhoven B. S.; Freyaldenhoven M. P.; Iacovoni J. S.; Vogt P. K. Avian winged helix proteins CWH-1, CWH-2 and CWH-3 repress transcription from Qin binding sites. Oncogene 15: 483–488; 1997.

    Article  PubMed  CAS  Google Scholar 

  • Hanna L. A.; Foreman R. K.; Tarasenko I. A.; Kessler D. S.; Labosky P. A. Requirement for Foxd3 in maintaining pluripotent cells of the early mouse embryo. Genes Dev. 16: 2650–2661; 2002.

    Article  PubMed  CAS  Google Scholar 

  • Hromas R.; Ye H.; Spinella M.; Dmitrovsky E.; Xu D.; Costa R. H. Genesis, a Winged Helix transcriptional repressor, has embryonic expression limited to the neural crest, and stimulates proliferation in vitro in a neural development model. Cell Tissue Res. 297: 371–382; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Imai K. S.; Satoh N.; Satou Y. An essential role of a FoxD gene in notochord induction in Ciona embryos. Development 129, 3441–3453; 2002.

    Google Scholar 

  • Katoh M. Human Fox gene family. Int. J. Oncol. 25(5): 1495–1500; 2004.

    PubMed  CAS  Google Scholar 

  • Kelsh R. N.; Dutton K.; Medlin J.; Eisen J. S. Expression of zebrafish fkd6 in neural crest-derived glia. Mech. Dev. 93(1–2): 161–164; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Kos R.; Reedy M. V.; Johnson R. L.; Erickson C. A. The winged-helix transcription factor FoxD3 is important for establishing the neural crest lineage and repressing melanogenesis in avian embryos. Development 128: 1467–1479; 2001.

    PubMed  CAS  Google Scholar 

  • Labosky P. A.; Kaestner K. H. The winged helix transcription factor Hfh2 is expressed in neural crest and spinal cord during mouse development. Mech. Dev. 76: 185–190; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Lee H.-C.; Huang H.-Y.; Lin Ch-Y; Chen Y.-H.; Tsai H.-J. Foxd3 mediates zebrafish myf5 expression during early somitogenesis. Dev. Biol. 290: 359–372; 2006.

    Article  PubMed  CAS  Google Scholar 

  • Lef J.; Dege P.; Scheucher M.; Forsbach-Birk V.; Clement J. H.; Knochel W. A fork head related multigene family is transcribed in Xenopus laevis embryos. Int. J. Dev. Biol. 40: 245–253; 1996.

    PubMed  CAS  Google Scholar 

  • Lehmann O. J.; Sowden J. C.; Carlsson P.; Jordan T.; Bhattacharya S. S. Fox’s in development and disease. Trends Genet. 19: 339–344; 2003.

    Article  PubMed  CAS  Google Scholar 

  • Lister J. A.; Cooper C.; Nguyen K.; Modrell M.; Grant K.; Raible D. W. Zebrafish Foxd3 is required for development of a subset of neural crest derivatives. Dev. Biol. 290: 92–104; 2006.

    Article  PubMed  CAS  Google Scholar 

  • Margaret B.; Frederic R. The role of Pax Genes in the development of tissues and organs: Pax3 and Pax7 regulate muscle progenitor cell functions. Annu. Rev. Cell Dev. Biol. 23: 645–673; 2007.

    Article  Google Scholar 

  • Odenthal J.; Nüsslein-Volhard C. Fork head domain genes in zebrafish. Dev. Genes Evol. 208: 245–258; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Pohl B. S.; Knochel W. Overexpression of the transcriptional repressor FoxD3 prevents neural crest formation in Xenopus embryos. Mech. Dev. 103: 93–106; 2001.

    Article  PubMed  CAS  Google Scholar 

  • Pohl B. S.; Knochel W. Of fox and frogs: fox (fork head/winged helix) transcription factors in Xenopus development. Gene 344: 21–32; 2005.

    Article  PubMed  CAS  Google Scholar 

  • Robert K.; Mark V. R.; Randy L. J.; Carol A. E. The winged-helix transcription factor FoxD3 is important for establishing the neural crest lineage and repressing melanogenesis in avian embryos. Development 128: 1467–1479; 2001.

    Google Scholar 

  • Sasai N.; Mizuseki K.; Sasai Y. Requirement of FoxD3-class signaling for neural crest determination in Xenopus. Development 128: 2525–2536; 2001.

    PubMed  CAS  Google Scholar 

  • Steiner A. B.; Engleka M. J.; Lu Q.; Piwarzyk E. C.; Yaklichkin S.; Lefebvre J. L.; Walters J. W.; Pineda-Salgado L.; Labosky P. A.; Kessler D. S. FoxD3 regulation of nodal in the Spemann organizer is essential for Xenopus dorsal mesoderm development. Development 133(24): 4827–4838; 2006.

    Article  PubMed  CAS  Google Scholar 

  • Sutton J.; Costa R.; Klug M.; Field L.; Xu D.; Largaespada D. A.; Fletcher C. F.; Jenkins N. A.; Copeland N. G.; Klemsz M.; Hromas R. Genesis, a Winged Helix transcriptional repressor with expression restricted to embryonic stem cells. J. Biol. Chem. 271(38): 23126–23133; 1996.

    Article  PubMed  CAS  Google Scholar 

  • Tan X.; Zhang Y.; Zhang P.-J.; Xu P.; Xu Y. Molecular structure and expression patterns of flounder (Paralichthys olivaceus) Myf-5, a myogenic regulatory factor. Comp. Biochem. Physiol. Part B 145: 204–213; 2006.

    Article  Google Scholar 

  • Tompers D. M.; Foremanl R. K.; Wang Q.; Kumanova M.; Labosky P. A. Foxd3 is required in the trophoblast progenitor cell lineage of the mouse embryo. Dev. Biol. 285(1): 126–137; 2005.

    Article  PubMed  CAS  Google Scholar 

  • Weigel D.; Jürgens G.; Küttner F.; Seifert E.; Jäckle H. The homeotic gene fork head encodes a nuclear protein and is expressed in the terminal regions of the Drosophila embryo. Cell 57: 645–658; 1989.

    Article  PubMed  CAS  Google Scholar 

  • Xu D.; Yoder M.; Sutton J.; Hromas R. Forced expression of Genesis, a winged helix transcriptional repressor isolated from embryonic stem cells, blocks granulocytic differentiation of 32D myeloid cells. Leukemia 12: 207–212; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Yamagata M.; Noda M. The winged-helix transcription factor CWH-3 is expressed in developing neural crest cells. Neurosci. Lett. 249: 33–36; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Yu J. K.; Holland L. Z.; Holland N. D. An amphioxus nodal gene (AmphiNodal) with early symmetrical expression in the organizer and mesoderm and later asymmetrical expression associated with left-right axis formation. Evol. Dev. 4, 418–425; 2002a.

  • Yu J. K.; Holland N. D.; Holland L. Z. An amphioxus winged helix/forkhead gene, AmphiFoxD: insights into vertebrate neural crest evolution. Dev. Dyn. 225, 289–297; 2002b.

    Google Scholar 

  • Zhang Y.; Tan X.; Zhang P. J.; Xu Y. Characterization of muscle regulatory gene, MyoD, from flounder (Paralichthys olivaceus) and analysis of its expression patterns during embryogenesis. Mar. Biotechnol. (NY) 8: 139–148; 2006.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thanks Prof. Yun Li, Ocean University of China, for supplying the GFP construct. This work was supported by the Natural Science Foundation of Shandong Province, P.R. China to X. Tan (Y2008E12), the National Basic Research Program of China (973 Program, No. 2010CB126304) and the National High Technology Research and Development Program of China (863 Program, No. 2006AA10AA402).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xungang Tan.

Additional information

Editor: T. Okamoto

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Y., Tan, X., Sun, W. et al. Characterization of flounder (Paralichthys olivaceus) FoxD3 and its function in regulating myogenic regulatory factors. In Vitro Cell.Dev.Biol.-Animal 47, 399–405 (2011). https://doi.org/10.1007/s11626-011-9406-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-011-9406-7

Keywords

Navigation