Skip to main content

Advertisement

Log in

The effects of platelet-rich plasma derived from human umbilical cord blood on the osteogenic differentiation of human dental stem cells

  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Abstract

Platelet-rich plasma (PRP) is an emerging therapeutic application because PRP contains various growth factors that have beneficial effects on tissue regeneration and engineering. Mesenchymal stem cells and PRP derived from peripheral blood have been well studied. In this study, we investigated the effects of PRP derived from human umbilical cord blood (UCB-PRP) on proliferation, alkaline phosphatase (ALP) activity, and osteogenic differentiation of stem cells from human exfoliated deciduous teeth (SHEDs), dental pulp stem cells (DPSCs), and periodontal ligament stem cells (PDLSCs). Three types of dental stem cells were primarily isolated and characterized by flow cytometric analysis. Dental stem cells were exposed to various concentrations of UCB-PRP, which resulted in the proliferation of dental stem cells. Treatment with 2% UCB-PRP resulted in the highest level of proliferation. The ALP activity of DPSCs and PDLSCs increased following treatment with UCB-PRP in a dose-dependent manner up to a concentration of 2%. ALP activity decreased with higher concentration of UCB-PRP. The effects of UCB-PRP on calcium deposition were similar to those on proliferation and ALP activity. Treatment with 2% UCB-PRP resulted in the highest calcium depositions in DPSCs and PDLSCs; however, treatment with 1% UCB-PRP resulted in the highest calcium deposition in SHEDs. The concentrations of platelet-derived growth factor-AB and transforming growth factor-β1 in UCB-PRP were investigated and found to be comparable to the amounts in peripheral blood. Overall, UCB-PRP had beneficial effects on the proliferation and osteogenic differentiation of dental stem cells. Determination of the optimal concentration of UCB-PRP requires further investigation for clinical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.

Similar content being viewed by others

References

  • Barrientos S.; Stojadinovic O.; Golinko M. S.; Brem H.; Tomic-Canic M. Growth factors and cytokines in wound healing. Wound Repair Regen. 16: 585–601; 2008.

    Article  PubMed  Google Scholar 

  • Broxmeyer H. E. Biology of cord blood cells and future prospects for enhanced clinical benefit. Cytotherapy 7: 209–18; 2005.

    Article  CAS  PubMed  Google Scholar 

  • Capelli C.; Domenghini M.; Borleri G.; Bellavita P.; Poma R.; Carobbio A.; Mico C.; Rambaldi A.; Golay J.; Introna M. Human platelet lysate allows expansion and clinical grade production of mesenchymal stromal cells from small samples of bone marrow aspirates or marrow filter washouts. Bone Marrow Transplant. 40: 785–91; 2007.

    Article  CAS  PubMed  Google Scholar 

  • Dimitriou H.; Matsouka C.; Perdikoyanni C.; Stiakaki E.; Bolonaki I.; Lydaki E.; Koumantakis E.; Kalmanti M. Phenotypic characteristics of cord blood hemopoietic cells. Leuk. Res. 22: 755–8; 1998.

    Article  CAS  PubMed  Google Scholar 

  • Doucet C.; Ernou I.; Zhang Y.; Llense J. R.; Begot L.; Holy X.; Lataillade J. J. Platelet lysates promote mesenchymal stem cell expansion: a safety substitute for animal serum in cell-based therapy applications. J. Cell. Physiol. 205: 228–36; 2005.

    Article  CAS  PubMed  Google Scholar 

  • Erices A.; Conget P.; Minguell J. J. Mesenchymal progenitor cells in human umbilical cord blood. Br. J. Haematol. 109: 235–42; 2000.

    Article  CAS  PubMed  Google Scholar 

  • Gluckman E. History of cord blood transplantation. Bone Marrow Transplant. 44: 621–6; 2009.

    Article  CAS  PubMed  Google Scholar 

  • Ingram D. A.; Mead L. E.; Tanaka H.; Meade V.; Fenoglio A.; Mortell K.; Pollok K.; Ferkowicz M. J.; Gilley D.; Yoder M. C. Identification of a novel hierarchy of endothelial progenitor cells using human peripheral and umbilical cord blood. Blood 104: 2752–60; 2004.

    Article  CAS  PubMed  Google Scholar 

  • Kawase T.; Okuda K.; Saito Y.; Yoshie H. In vitro evidence that the biological effects of platelet-rich plasma on periodontal ligament cells is not mediated solely by constituent transforming-growth factor-beta or platelet-derived growth factor. J. Periodontol. 76: 760–7; 2005.

    Article  CAS  PubMed  Google Scholar 

  • Kocaoemer A.; Kern S.; Kluter H.; Bieback K. Human AB serum and thrombin-activated platelet-rich plasma are suitable alternatives to fetal calf serum for the expansion of mesenchymal stem cells from adipose tissue. Stem Cells 25: 1270–8; 2007.

    Article  CAS  PubMed  Google Scholar 

  • Kogler G.; Sensken S.; Airey J. A.; Trapp T.; Muschen M.; Feldhahn N.; Liedtke S.; Sorg R. V.; Fischer J.; Rosenbaum C.; Greschat S.; Knipper A.; Bender J.; Degistirici O.; Gao J.; Caplan A. I.; Colletti E. J.; Almeida-Porada G.; Muller H. W.; Zanjani E.; Wernet P. A new human somatic stem cell from placental cord blood with intrinsic pluripotent differentiation potential. J. Exp. Med. 200: 123–35; 2004.

    Article  PubMed  Google Scholar 

  • Kulterer B.; Friedl G.; Jandrositz A.; Sanchez-Cabo F.; Prokesch A.; Paar C.; Scheideler M.; Windhager R.; Preisegger K. H.; Trajanoski Z. Gene expression profiling of human mesenchymal stem cells derived from bone marrow during expansion and osteoblast differentiation. BMC Genomics 8: 70; 2007.

    Article  PubMed  Google Scholar 

  • Lee O. K.; Kuo T. K.; Chen W. M.; Lee K. D.; Hsieh S. L.; Chen T. H. Isolation of multipotent mesenchymal stem cells from umbilical cord blood. Blood 103: 1669–75; 2004.

    Article  CAS  PubMed  Google Scholar 

  • Lucarelli E.; Beccheroni A.; Donati D.; Sangiorgi L.; Cenacchi A.; Del Vento A. M.; Meotti C.; Bertoja A. Z.; Giardino R.; Fornasari P. M.; Mercuri M.; Picci P. Platelet-derived growth factors enhance proliferation of human stromal stem cells. Biomaterials 24: 3095–100; 2003.

    Article  CAS  PubMed  Google Scholar 

  • Mishra A.; Tummala P.; King A.; Lee B.; Kraus M.; Tse V.; Jacobs C. R. Buffered platelet-rich plasma enhances mesenchymal stem cell proliferation and chondrogenic differentiation. Tissue Eng C Meth. 15: 431–5; 2009.

    Article  CAS  Google Scholar 

  • Ng F.; Boucher S.; Koh S.; Sastry K. S.; Chase L.; Lakshmipathy U.; Choong C.; Yang Z.; Vemuri M. C.; Rao M. S.; Tanavde V. PDGF, TGF-beta, and FGF signaling is important for differentiation and growth of mesenchymal stem cells (MSCs): transcriptional profiling can identify markers and signaling pathways important in differentiation of MSCs into adipogenic, chondrogenic, and osteogenic lineages. Blood 112: 295–307; 2008.

    Article  CAS  PubMed  Google Scholar 

  • Nikolidakis D.; Jansen J. A. The biology of platelet-rich plasma and its application in oral surgery: literature review. Tissue Eng. B Rev. 14: 249–58; 2008.

    Article  CAS  Google Scholar 

  • Okuda K.; Kawase T.; Momose M.; Murata M.; Saito Y.; Suzuki H.; Wolff L. F.; Yoshie H. Platelet-rich plasma contains high levels of platelet-derived growth factor and transforming growth factor-beta and modulates the proliferation of periodontally related cells in vitro. J. Periodontol. 74: 849–57; 2003.

    Article  CAS  PubMed  Google Scholar 

  • Paloczi K. Immunophenotypic and functional characterization of human umbilical cord blood mononuclear cells. Leukemia 13(Suppl 1): S87–9; 1999.

    Article  PubMed  Google Scholar 

  • Plachokova A. S.; Nikolidakis D.; Mulder J.; Jansen J. A.; Creugers N. H. Effect of platelet-rich plasma on bone regeneration in dentistry: a systematic review. Clin. Oral Implants Res. 19: 539–45; 2008.

    Article  PubMed  Google Scholar 

  • Sampson S.; Gerhardt M.; Mandelbaum B. Platelet rich plasma injection grafts for musculoskeletal injuries: a review. Curr Rev Musculoskelet Med 1: 165–74; 2008.

    Article  PubMed  Google Scholar 

  • Schecroun N.; Delloye C. In vitro growth and osteoblastic differentiation of human bone marrow stromal cells supported by autologous plasma. Bone 35: 517–24; 2004.

    Article  CAS  PubMed  Google Scholar 

  • Stein G. S.; Lian J. B. Molecular mechanisms mediating proliferation/differentiation interrelationships during progressive development of the osteoblast phenotype. Endocr. Rev. 14: 424–42; 1993.

    CAS  PubMed  Google Scholar 

  • Vogel J. P.; Szalay K.; Geiger F.; Kramer M.; Richter W.; Kasten P. Platelet-rich plasma improves expansion of human mesenchymal stem cells and retains differentiation capacity and in vivo bone formation in calcium phosphate ceramics. Platelets 17: 462–9; 2006.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

This work was supported by Bioteeth Project (no. 20090084043) from the National Research Foundation of Korea grant funded by the Ministry of Education, Science and Technology, Republic of Korea and by Regenomics (no. 20100002086), the nanobiotechnology development program from the National Research Foundation of Korea grant funded by the Ministry of Education, Science and Technology, Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gene Lee.

Additional information

Editor: J. Denry Sato

Jung-Yeon Lee and Hyun Nam equally contributed to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, JY., Nam, H., Park, YJ. et al. The effects of platelet-rich plasma derived from human umbilical cord blood on the osteogenic differentiation of human dental stem cells. In Vitro Cell.Dev.Biol.-Animal 47, 157–164 (2011). https://doi.org/10.1007/s11626-010-9364-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-010-9364-5

Keywords

Navigation