Skip to main content

Advertisement

Log in

Gamma-irradiation depletes endogenous germ cells and increases donor cell distribution in chimeric chickens

  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Abstract

The production of chimeric birds is an important tool for the investigation of vertebrate development, the conservation of endangered birds, and the development of various biotechnological applications. This study examined whether gamma (γ)-irradiation depletes endogenous primordial germ cells and enhances the efficiency of somatic chimerism in chickens. An optimal irradiation protocol for stage X embryos was determined after irradiation at various doses (0, 100, 300, 500, 600, 700, and 2,000 rad). Exposure to 500 rad of γ-irradiation for 73 s significantly decreased the number of primordial germ cells (P < 0.0001). Somatic chimera hatchlings were then produced by transferring blastodermal cells from a Korean Oge into either an irradiated (at 500 rad) or intact stage X White Leghorn embryo. An analysis of feather color pattern and polymerase chain reaction-based species-specific amplification of various tissues of the hatchlings confirmed chimerism in most organs of the chick produced from the irradiated recipient; a lesser degree of chimerism was observed in the non-irradiated control recipient. In conclusion, the exposure of chick embryos to an optimized dose of γ-irradiation effectively depleted germ cells and yielded greater somatic chimerism than non-irradiated control embryos. This technique can be applied to interspecies reproduction or the production of transgenic birds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.

Similar content being viewed by others

References

  • Addison I. E.; Berenbaum M. C. The effect of cysteine on the immunosuppressive activity of busulphan, cyclophosphamide and nitrogen mustard. Br. J. Cancer 25: 172–181; 1971.

    CAS  PubMed  Google Scholar 

  • Aigegil V.; Simkiss K. Sterilizing embryos for transgenic chimeras. Br. Poult. Sci. 32: 427–438; 1991.

    Article  CAS  Google Scholar 

  • Andacht T.; Hu W.; Ivarie R. Rapid and improved method for windowing eggs accessing the stage X chicken embryo. Mol. Reprod. Dev. 69: 31–34; 2004.

    Article  CAS  PubMed  Google Scholar 

  • Bellairs R.; Osmond M. The atlas of chick development. Academic, San Diego; 1998.

    Google Scholar 

  • Carsience R. S.; Clark M. E.; Verrinder Gibbins A. M.; Etches R. J. Germline chimeric chickens from dispersed donor blastodermal cells and compromised recipient embryos. Development 117: 669–675; 1993.

    CAS  PubMed  Google Scholar 

  • Choi J. W.; Lee E. Y.; Shin J. H.; Zheng Y.; Cho B. W.; Kim J. K.; Kim H.; Han J. Y. Identification of breed-specific DNA polymorphisms for a simple and unambiguous screening system in germline chimeric chickens. J. Exp. Zool. Part. A Ecol. Genet. Physiol. 307: 241–248; 2007.

    Article  Google Scholar 

  • Davey M. G.; Tickle C. The chicken as a model for embryonic development. Cytogenet. Genome. Res. 117: 231–239; 2007.

    Article  CAS  PubMed  Google Scholar 

  • Eyal-Giladi H.; Kochav S. From cleavage to primitive streak formation: a complementary normal table and a new look at the first stages of the development of the chick. I. General morphology. Dev. Biol. 49: 321–337; 1976.

    Article  CAS  PubMed  Google Scholar 

  • Hamburger V.; Hamilton H. L. A series of normal stages in the development of the chick embryo. J. Morphol. 88: 49–92; 1951.

    Article  Google Scholar 

  • Han J. Y. Germ cells and transgenesis in chickens. Comp. Immunol. Microbiol. Infect. Dis. 32: 61–80; 2009.

    Article  PubMed  Google Scholar 

  • Jung J. G.; Kim D. K.; Park T. S.; Lee S. D.; Lim J. M.; Han J. Y. Development of novel markers for the characterization of chicken primordial germ cells. Stem Cells 23: 689–698; 2005.

    Article  CAS  PubMed  Google Scholar 

  • Kagami H.; Tagami T.; Matsubara Y.; Harumi T.; Hanada H.; Maruyama K.; Sakurai M.; Kuwana T.; Naito M. The developmental origin of primordial germ cells and the transmission of the donor-derived gametes in mixed-sex germline chimeras to the offspring in the chicken. Mol. Reprod. Dev. 48: 501–510; 1997.

    Article  CAS  PubMed  Google Scholar 

  • Le Douarin N. M. Developmental patterning deciphered in avian chimeras. Dev. Growth Differ. 50(Suppl 1): S11–28; 2008.

    Article  PubMed  Google Scholar 

  • Nohno T.; Kawakami Y.; Ohuchi H.; Fujiwara A.; Yoshioka H.; Noji S. Involvement of the sonic hedgehog gene in chick feather formation. Biochem. Biophys. Res. Commun. 206: 33–39; 1995.

    Article  CAS  PubMed  Google Scholar 

  • Park H. J.; Park T. S.; Kim T. M.; Kim J. N.; Shin S. S.; Lim J. M.; Han J. Y. Establishment of an in vitro culture system for chicken preblastodermal cells. Mol. Reprod. Dev. 73: 452–461; 2006.

    Article  CAS  PubMed  Google Scholar 

  • Park T. S.; Han J. Y. Derivation and characterization of pluripotent embryonic germ cells in chicken. Mol. Reprod. Dev. 56: 475–482; 2000.

    Article  CAS  PubMed  Google Scholar 

  • Park T. S.; Hong Y. H.; Kwon S. C.; Lim J. M.; Han J. Y. Birth of germline chimeras by transfer of chicken embryonic germ (EG) cells into recipient embryos. Mol. Reprod. Dev. 65: 389–395; 2003a.

    Article  CAS  PubMed  Google Scholar 

  • Park T. S.; Jeong D. K.; Kim J. N.; Song H.; Hong Y. H.; Lim J. M. Improved germline transmission in chicken chimeras produced by transplantation of gonadal primordial germ cells into recipient embryos. Biol. Reprod. 68: 1657–1662; 2003b.

    Article  CAS  PubMed  Google Scholar 

  • Song Y.; D’Costa S.; Pardue S. L.; Petitte J. N. Production of germline chimeric chickens following the administration of a busulfan emulsion. Mol. Reprod. Dev. 70: 438–444; 2005.

    Article  CAS  PubMed  Google Scholar 

  • Speksnijder G.; Ivarie R. A modified method of shell windowing for producing somatic or germline chimeras in fertilized chicken eggs. Poult. Sci. 79: 1430–1433; 2000.

    CAS  PubMed  Google Scholar 

  • Thoraval P.; Lasserre F.; Coudert F.; Dambrine G. Somatic and germline chimeras obtained from Brown and White Leghorns by transfer of early blastodermal cells. Poult. Sci. 73: 1897–1905; 1994.

    CAS  PubMed  Google Scholar 

  • Yu M.; Yue Z.; Wu P.; Wu D. Y.; Mayer J. A.; Medina M.; Widelitz R. B.; Jiang T. X.; Chuong C. M. The developmental biology of feather follicles. Int. J. Dev. Biol. 48: 181–191; 2004.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by a grant from the Basic Science Research Program (KRF-2006-311-F00087) and the World Class University program (R31-10056) through the National Research Foundation (NRF) funded by the Ministry of Education, Science and Technology (MEST), Korea. Gamma-irradiation was conducted at the National Center for Inter-University Research Facilities at Seoul National University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae Yong Han.

Additional information

Editor: J. Denry Sato

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, K.J., Kang, S.J., Kim, T.M. et al. Gamma-irradiation depletes endogenous germ cells and increases donor cell distribution in chimeric chickens. In Vitro Cell.Dev.Biol.-Animal 46, 828–833 (2010). https://doi.org/10.1007/s11626-010-9361-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-010-9361-8

Keywords

Navigation