Skip to main content
Log in

The effects of various antioxidants on the development of parthenogenetic porcine embryos

  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Abstract

The major objective of this study was to improve the development rate of parthenogenetic porcine embryos. In this study, the anti-oxidative and anti-apoptotic effects of three antioxidants, β-mercaptoethanol (β-ME), α-tocopherol, and extracellular superoxide dismutase (EC-SOD), were examined on the development of parthenogenetic porcine embryos. The development rate of parthenogenetic porcine embryos to the blastocyst stage was 8.1% for control; 19.1%, 14.6%, and 5.0% for 1, 3, and 5 μM β-ME; 17.2% and 17.5% for 50 and 100 μM α-tocopherol and 12.0% and 4.0% for EC-SOD transgenic mouse embryonic fibroblast (Tg-MEF) and EC-SOD non-transgenic mouse embryonic fibroblast (NTg-MEF) conditioned medium at day 3, respectively. Here, β-ME, α-tocopherol, and EC-SOD Tg-MEF conditioned medium increased the development rate of parthenogenetic porcine embryos to the blastocyst stage (P < 0.05). The average number of total cells and apoptotic cells at the blastocyst was analyzed at the optimal conditions of the three antioxidants. The three antioxidants increased the average number of total cells at the blastocyst, and they decreased apoptotic cells at the blastocyst as compared to control without supplementation (P < 0.05). When the reactive oxygen species levels in two-cell embryos after 1 μM β-ME and 100 μM α-tocopherol treatment were examined, those were lower than control group (P < 0.05). In conclusion, it was found that the three antioxidants, β-mercaptoethanol, α-tocopherol, and EC-SOD Tg-MEF, conditioned medium can play a role as a strong stimulator in the development of parthenogenetic porcine embryos.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Abeydeera L. R.; Wang W. H.; Cantley T. C.; Prather R. S.; Day B. N. Presence of beta-mercaptoethanol can increase the glutathione content of pig oocytes matured in vitro and the rate of blastocyst development after in vitro fertilization. Theriogenology 50: 747–756; 1998.

    Article  CAS  PubMed  Google Scholar 

  • Aitken R. J.; Clarkson J. S.; Fishel S. Generation of reactive oxygen species, lipid peroxidation, and human sperm function. Biol. Reprod. 41: 183–197; 1989.

    Article  CAS  PubMed  Google Scholar 

  • Caamano J. N.; Ryoo Z. Y.; Thomas J. A.; Youngs C. R. beta-mercaptoethanol enhances blastocyst formation rate of bovine in vitro-matured/in vitro-fertilized embryos. Biol. Reprod. 55: 1179–1184; 1996.

    Article  CAS  PubMed  Google Scholar 

  • Che L.; Lalonde A.; Bordignon V. Chemical activation of parthenogenetic and nuclear transfer porcine oocytes using ionomycin and strontium chloride. Theriogenology 67: 1297–1304; 2007.

    Article  CAS  PubMed  Google Scholar 

  • Choi J.; Park S. M.; Lee E.; Kim J. H.; Jeong Y. I.; Lee J. Y.; Park S. W.; Kim H. S.; Hossein M. S.; Jeong Y. W.; Kim S.; Hyun S. H.; Hwang W. S. Anti-apoptotic effect of melatonin on preimplantation development of porcine parthenogenetic embryos. Mol. Reprod. Dev. 75: 1127–1135; 2008.

    Article  CAS  PubMed  Google Scholar 

  • Cui X. S.; Kim N. H. Polyamines inhibit apoptosis in porcine parthenotes developing in vitro. Mol. Reprod. Dev. 70: 471–477; 2005.

    Article  CAS  PubMed  Google Scholar 

  • de Matos D. G.; Furnus C. C.; Moses D. F.; Martinez A. G.; Matkovic M. Stimulation of glutathione synthesis of in vitro matured bovine oocytes and its effect on embryo development and freezability. Mol. Reprod. Dev. 45: 451–457; 1996.

    Article  PubMed  Google Scholar 

  • Dennery P. A. Effects of oxidative stress on embryonic development. Birth Defects Res. C. Embryo Today 81: 155–162; 2007.

    Article  CAS  PubMed  Google Scholar 

  • Freeman B. A.; Crapo J. D. Biology of disease: free radicals and tissue injury. Lab. Invest. 47: 412–426; 1982.

    CAS  PubMed  Google Scholar 

  • Funahashi H. Effect of beta-mercaptoethanol during in vitro fertilization procedures on sperm penetration into porcine oocytes and the early development in vitro. Reproduction 130: 889–898; 2005.

    Article  CAS  PubMed  Google Scholar 

  • Goto Y.; Noda Y.; Narimoto K.; Umaoka Y.; Mori T. Oxidative stress on mouse embryo development in vitro. Free Radic. Biol. Med. 13: 47–53; 1992.

    Article  CAS  PubMed  Google Scholar 

  • Guerin P.; El Mouatassim S.; Menezo Y. Oxidative stress and protection against reactive oxygen species in the pre-implantation embryo and its surroundings. Hum. Reprod. Updat. 7: 175–189; 2001.

    Article  CAS  Google Scholar 

  • Halliwell B.; Aruoma O. I. DNA damage by oxygen-derived species. Its mechanism and measurement in mammalian systems. FEBS Lett. 281: 9–19; 1991.

    Article  CAS  PubMed  Google Scholar 

  • Hossein M. S.; Hashem M. A.; Jeong Y. W.; Lee M. S.; Kim S.; Kim J. H.; Koo O. J.; Park S. M.; Lee E. G.; Park S. W.; Kang S. K.; Lee B. C.; Hwang W. S. Temporal effects of alpha-tocopherol and L-ascorbic acid on in vitro fertilized porcine embryo development. Anim. Reprod. Sci. 100: 107–117; 2007.

    Article  CAS  PubMed  Google Scholar 

  • Jeong Y. W.; Park S. W.; Hossein M. S.; Kim S.; Kim J. H.; Lee S. H.; Kang S. K.; Lee B. C.; Hwang W. S. Antiapoptotic and embryotrophic effects of alpha-tocopherol and L-ascorbic acid on porcine embryos derived from in vitro fertilization and somatic cell nuclear transfer. Theriogenology 66: 2104–2112; 2006.

    Article  CAS  PubMed  Google Scholar 

  • Kim K.; Lerou P.; Yabuuchi A.; Lengerke C.; Ng K.; West J.; Kirby A.; Daly M. J.; Daley G. Q. Histocompatible embryonic stem cells by parthenogenesis. Science 315: 482–486; 2007.

    Article  CAS  PubMed  Google Scholar 

  • Kim S. H.; Kim M. O.; Gao P.; Youm C. A.; Park H. R.; Lee T. S.; Kim K. S.; Suh J. G.; Lee H. T.; Park B. J.; Ryoo Z. Y.; Lee T. H. Overexpression of extracellular superoxide dismutase (EC-SOD) in mouse skin plays a protective role in DMBA/TPA-induced tumor formation. Oncol. Res. 15: 333–341; 2005.

    CAS  PubMed  Google Scholar 

  • Kitagawa Y.; Suzuki K.; Yoneda A.; Watanabe T. Effects of oxygen concentration and antioxidants on the in vitro developmental ability, production of reactive oxygen species (ROS), and DNA fragmentation in porcine embryos. Theriogenology 62: 1186–1197; 2004.

    Article  CAS  PubMed  Google Scholar 

  • Lee S. R.; Kim M. O.; Kim S. H.; Kim B. S.; Yoo D. H.; Park Y. S.; Park Y. B.; Ha J. H.; Ryoo Z. Y. Effect of conditioned medium of mouse embryonic fibroblasts produced from EC-SOD transgenic mice in nuclear maturation of canine oocytes in vitro. Anim. Reprod. Sci. 99: 106–116; 2007.

    Article  CAS  PubMed  Google Scholar 

  • Li J.; Foote R. H. Culture of rabbit zygotes into blastocysts in protein-free medium with one to twenty per cent oxygen. J. Reprod. Fertil. 98: 163–167; 1993.

    Article  CAS  PubMed  Google Scholar 

  • Lim J. M.; Liou S. S.; Hansel W. Intracytoplasmic glutathione concentration and the role of beta-mercaptoethanol in preimplantation development of bovine embryos. Theriogenology 46: 429–439; 1996.

    Article  CAS  PubMed  Google Scholar 

  • Marnett L. J. Lipid peroxidation-DNA damage by malondialdehyde. Mutat. Res. 424: 83–95; 1999.

    CAS  PubMed  Google Scholar 

  • McEvoy T. G.; Coull G. D.; Broadbent P. J.; Hutchinson J. S.; Speake B. K. Fatty acid composition of lipids in immature cattle, pig and sheep oocytes with intact zona pellucida. J Reprod. Fertil. 118: 163–170; 2000.

    Article  CAS  PubMed  Google Scholar 

  • Meister A. Selective modification of glutathione metabolism. Science 220: 472–477; 1983.

    Article  CAS  PubMed  Google Scholar 

  • Orsi N. M.; Leese H. J. Protection against reactive oxygen species during mouse preimplantation embryo development: role of EDTA, oxygen tension, catalase, superoxide dismutase and pyruvate. Mol. Reprod. Dev. 59: 44–53; 2001.

    Article  CAS  PubMed  Google Scholar 

  • Sturmey R. G.; Leese H. J. Energy metabolism in pig oocytes and early embryos. Reproduction 126: 197–204; 2003.

    Article  CAS  PubMed  Google Scholar 

  • Takahashi M.; Nagai T.; Hamano S.; Kuwayama M.; Okamura N.; Okano A. Effect of thiol compounds on in vitro development and intracellular glutathione content of bovine embryos. Biol. Reprod. 49: 228–232; 1993.

    Article  CAS  PubMed  Google Scholar 

  • Yang H. W.; Hwang K. J.; Kwon H. C.; Kim H. S.; Choi K. W.; Oh K. S. Detection of reactive oxygen species (ROS) and apoptosis in human fragmented embryos. Hum. Reprod. 13: 998–1002; 1998.

    Article  CAS  PubMed  Google Scholar 

  • Yi Y. J.; Park C. S. Parthenogenetic development of porcine oocytes treated by ethanol, cycloheximide, cytochalasin B and 6-dimethylaminopurine. Anim. Reprod. Sci. 86: 297–304; 2005.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by Grant-in Aid from Rural Development Administration, Technology Development Program for Agriculture and Forestry, Ministry for Agriculture, Forestry and Fisheries, Republic of Korea and Grant of the Korean Ministry of Education, Science, and Technology (The Regional Core Research Program).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Byung Hwa Hyun or Zae Young Ryoo.

Additional information

Editor: J. Denry Sato.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yuh, H.S., Yu, D.H., Shin, M.J. et al. The effects of various antioxidants on the development of parthenogenetic porcine embryos. In Vitro Cell.Dev.Biol.-Animal 46, 148–154 (2010). https://doi.org/10.1007/s11626-009-9250-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-009-9250-1

Keywords

Navigation