Skip to main content
Log in

Preliminary report on virtual monochromatic spectral imaging with fast kVp switching dual energy head CT: comparable image quality to that of 120-kVp CT without increasing the radiation dose

  • Technical Note
  • Published:
Japanese Journal of Radiology Aims and scope Submit manuscript

Abstract

Purpose

This study aimed to evaluate whether the image quality of virtual monochromatic spectral imaging with fast kVp switching dual-energy CT (DECT) can be comparable to that of 120-kVp single-energy CT (SECT) without increasing the radiation dose.

Materials and methods

We retrospectively identified 15 postoperative patients who had undergone both DECT and 120-kVp SECT within a short period of time for follow-up after brain surgery. Simulated 65 keV monochromatic images were reconstructed from DECT data. Subjective image noise, gray–white matter contrast, and overall image quality were rated using a four-point scale. Quantitative measurement of noise, contrast-to-noise ratio (CNR), and posterior fossa beam-hardening artifact were also performed. The figure of merit (FOM), calculated as CNR2/CTDIvol, was used to quantify image quality improvement per exposure risk.

Results

The mean CTDIvol was 70.2 ± 0.3 mGy for DECT, which was 11 % lower than SECT (78.9 ± 2.1 mGy). All images were graded above clinically acceptable. Quantitative and qualitative measures for simulated 65-keV images were comparable with SECT images, except for increase in subjective noise. FOM was significantly greater for simulated 65-keV images (P = .03).

Conclusion

Our results indicate that virtual monochromatic imaging possibly provides comparable image quality to that afforded by 120-kVp SECT without increasing the dose in routine head CT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  1. Graser A, Johnson TR, Chandarana H, Macari M. Dual energy CT: preliminary observations and potential clinical applications in the abdomen. Eur Radiol. 2009;19:13–23.

    Article  PubMed  Google Scholar 

  2. Ruzsics B, Lee H, Zwerner PL, Gebregziabher M, Costello P, Schoepf UJ. Dual-energy CT of the heart for diagnosing coronary artery stenosis and myocardial ischemia-initial experience. Eur Radiol. 2008;18:2414–24.

    Article  PubMed  Google Scholar 

  3. Thieme SF, Johnson TR, Lee C, McWilliams J, Becker CR, Reiser MF, et al. Dual-energy CT for the assessment of contrast material distribution in the pulmonary parenchyma. AJR Am J Roentgenol. 2009;193:144–9.

    Article  PubMed  Google Scholar 

  4. Stolzmann P, Scheffel H, Rentsch K, Schertler T, Frauenfelder T, Leschka S, et al. Dual-energy computed tomography for the differentiation of uric acid stones: ex vivo performance evaluation. Urol Res. 2008;36:133–8.

    Article  PubMed  Google Scholar 

  5. Choi HK, Al-Arfaj AM, Eftekhari A, Munk PL, Shojania K, Reid G, et al. Dual energy computed tomography in tophaceous gout. Ann Rheum Dis. 2009;68:1609–12.

    Article  PubMed  CAS  Google Scholar 

  6. Graser A, Johnson TRC, Hecht EM, Becker CR, Leidecker C, Staehler M, et al. Dual-energy CT in patients suspected of having renal masses: can virtual nonenhanced images replace true nonenhanced images? Radiology. 2009;252:433–40.

    Article  PubMed  Google Scholar 

  7. Ferda J, Novak M, Mirka H, Baxa J, Ferdova E, Bednarova A, et al. The assessment of intracranial bleeding with virtual unenhanced imaging by means of dual-energy CT angiography. Eur Radiol. 2009;19:2518–22.

    Article  PubMed  Google Scholar 

  8. Gupta R, Phan CM, Leidecker C, Brady TJ, Hirsch JA, Nogueira RG, et al. Evaluation of dual-energy CT for differentiating intracerebral hemorrhage from iodinated contrast material staining. Radiology. 2010;257:205–11.

    Article  PubMed  Google Scholar 

  9. Uotani K, Watanabe Y, Higashi M, Nakazawa T, Kono AK, Hori Y, et al. Dual-energy CT head bone and hard plaque removal for quantification of calcified carotid stenosis: utility and comparison with digital subtraction angiography. Eur Radiol. 2009;19:2060–5.

    Article  PubMed  Google Scholar 

  10. Watanabe Y, Uotani K, Nakazawa T, Higashi M, Yamada N, Hori Y, et al. Dual-energy direct bone removal CT angiography for evaluation of intracranial aneurysm or stenosis: comparison with conventional digital subtraction angiography. Eur Radiol. 2009;19:1019–24.

    Article  PubMed  Google Scholar 

  11. Wu X, Langan D, Xu D, Benson T, Pack J, Schmitz A, et al. Monochromatic CT image representation via fast switching dual kVp. Proc SPIE. 2009;7258:725845.

    Article  Google Scholar 

  12. Yeh BM, Shepherd JA, Wang ZJ, Teh HS, Hartman RP, Prevrhal S. Dual-energy and low-kVp CT in the abdomen. AJR Am J Roentgenol. 2009;193:47–54.

    Article  PubMed  Google Scholar 

  13. Lehmann LA, Alvarez RE, Macovski A, Brody WR, Pelc NJ, Riederer SJ, et al. Generalized image combinations in dual kVp digital radiography. Med Phys. 1981;8:659–67.

    Google Scholar 

  14. Lin XZ, Miao F, Li JY, Dong HP, Shen Y, Chen KM. High-definition CT Gemstone spectral imaging of the brain: initial results of selecting optimal monochromatic image for beam-hardening artifacts and image noise reduction. J Comput Assist Tomogr. 2011;35:294–7.

    Article  PubMed  Google Scholar 

  15. Matsumoto K, Jinzaki M, Tanami Y, Ueno A, Yamada M, Kuribayashi S. Virtual monochromatic spectral imaging with fast kilovoltage switching: improved image quality as compared with that obtained with conventional 120-kVp CT. Radiology. 2011;259:257–62.

    Article  PubMed  Google Scholar 

  16. Tawfik AM, Kerl JM, Razek AA, Bauer RW, Nour-Eldin NE, Vogl TJ, et al. Image quality and radiation dose of dual-energy CT of the head and neck compared with a standard 120-kVp acquisition. AJNR Am J Neuroradiol. 2011;32:1994–9.

    Article  PubMed  CAS  Google Scholar 

  17. Henzler T, Fink C, Schoenberg SO, Schoepf UJ. Dual-energy CT. Radiation dose aspects. AJR Am J Roentgenol. 2012;199:S16–25.

    Google Scholar 

  18. Li B, Yadava G, Hsieh J, Chandra N, Kulpins M. Head and body CTDIw of dual energy X-ray CT with fast-kVp switching. Proc SPIE. 2010;7622:76221Y.

    Google Scholar 

  19. Li B, Yadava G, Hsieh J. Quantification of head and body CTDI(VOL) of dual-energy x-ray CT with fast-kVp switching. Med Phys. 2011;38:2595–601.

    Article  PubMed  Google Scholar 

  20. Zhang D, Li X, Liu B. Objective characterization of GE Discovery CT750 HD scanner: gemstone spectral imaging mode. Med Phys. 2011;38:1178.

    Article  PubMed  Google Scholar 

  21. Mullins ME, Lev MH, Bove P, O’Reilly CE, Saini S, Rhea JT, et al. Comparison of image quality between conventional and low-dose nonenhanced head CT. AJNR Am J Neuroradiol. 2004;25:533–8.

    Google Scholar 

  22. Murakami Y, Kakeda S, Kamada K, Ohnari N, Nishimura J, Ogawa M, et al. Effect of tube voltage on image quality in 64-section multidetector 3D CT angiography: evaluation with a vascular phantom with superimposed bone skull structures. AJNR Am J Neuroradiol. 2010;31:620–5.

    Article  PubMed  CAS  Google Scholar 

  23. Udayasankar UK, Braithwaite K, Arvaniti M, Tudorascu D, Small WC, Little S, et al. Low-dose nonenhanced head CT protocol for follow-up evaluation of children with ventriculoperitoneal shunt: reduction of radiation and effect on image quality. AJNR Am J Neuroradiol. 2008;29:802–6.

    Article  PubMed  CAS  Google Scholar 

  24. Wong J, Xu T, Husain A, Le H, Molloi S. Effect of area X-ray beam equalization on image quality and dose in digital mammography. Phys Med Biol. 2004;49:3539–57.

    Google Scholar 

  25. Ho LM, Yoshizumi TT, Hurwitz LM, Nelson RC, Marin D, Toncheva G, et al. Dual energy versus single energy MDCT: measurement of radiation dose using adult abdominal imaging protocols. Acad Radiol. 2009;16:1400–7.

    Article  PubMed  Google Scholar 

  26. Bamberg F, Dierks A, Nikolaou K, Reiser MF, Becker CR, Johnson TR. Metal artifact reduction by dual energy computed tomography using monoenergetic extrapolation. Eur Radiol. 2011;21:1424–9.

    Article  PubMed  Google Scholar 

  27. Yu L, Christner JA, Leng S, Wang J, Fletcher JG, McCollough CH. Virtual monochromatic imaging in dual-source dual-energy CT: radiation dose and image quality. Med Phys. 2011;38:6371.

    Article  PubMed  Google Scholar 

  28. Vorona GA, Zuccoli G, Sutcavage T, Clayton BL, Ceschin RC, Panigrahy A. The use of adaptive statistical iterative reconstruction in pediatric head CT: a feasibility study. AJNR Am J Neuroradiol. 2013;34:205–11.

    Article  PubMed  CAS  Google Scholar 

  29. Rapalino O, Kamalian S, Kamalian S, Payabvash S, Souza LC, Zhang D, et al. Cranial CT with adaptive statistical iterative reconstruction: improved image quality with concomitant radiation dose reduction. AJNR Am J Neuroradiol. 2012;33:609–15.

    Article  PubMed  CAS  Google Scholar 

  30. Korn A, Fenchel M, Bender B, Danz S, Hauser TK, Ketelsen D, et al. Iterative reconstruction in head CT: image quality of routine and low-dose protocols in comparison with standard filtered back-projection. AJNR Am J Neuroradiol. 2012;33:218–24.

    Article  PubMed  CAS  Google Scholar 

  31. Kilic K, Erbas G, Guryildirim M, Arac M, Ilgit E, Coskun B. Lowering the dose in head CT using adaptive statistical iterative reconstruction. AJNR Am J Neuroradiol. 2011;32:1578–82.

    Article  PubMed  CAS  Google Scholar 

  32. Wang R, Yu W, Wu R, Yang H, Lu D, Liu J, et al. Improved image quality in dual-energy abdominal CT: comparison of iterative reconstruction in image space and filtered back projection reconstruction. AJR Am J Roentgenol. 2012;199:402–6.

    Article  PubMed  Google Scholar 

  33. Fukushima Y, Tsushima Y, Takei H, Taketomi-Takahashi A, Otake H, Endo K. Diagnostic reference level of computed tomography (CT) in Japan. Radiat Prot Dosimetry. 2012;151:51–7.

    Article  PubMed  Google Scholar 

  34. McCollough C, Branham T, Herlihy V, Bhargavan M, Robbins L, Bush K, et al. Diagnostic reference levels from the ACR CT accreditation program. J Am Coll Radiol JACR. 2011;8:795–803.

    Article  Google Scholar 

  35. Yu L, Leng S, McCollough CH. Dual-energy CT-based monochromatic imaging. AJR Am J Roentgenol. 2012;199:S9–15.

    Article  PubMed  Google Scholar 

Download references

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kouhei Kamiya.

About this article

Cite this article

Kamiya, K., Kunimatsu, A., Mori, H. et al. Preliminary report on virtual monochromatic spectral imaging with fast kVp switching dual energy head CT: comparable image quality to that of 120-kVp CT without increasing the radiation dose. Jpn J Radiol 31, 293–298 (2013). https://doi.org/10.1007/s11604-013-0185-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11604-013-0185-9

Keywords

Navigation