Skip to main content
Log in

SENP3 Promotes Mantle Cell Lymphoma Development through Regulating Wnt10a Expression

  • Original Article
  • Published:
Current Medical Science Aims and scope Submit manuscript

Abstract

Objective

SUMO-specific protease 3 (SENP3), a member of the SUMO-specific protease family, reverses the SUMOylation of SUMO-2/3 conjugates. Dysregulation of SENP3 has been proven to be involved in the development of various tumors. However, its role in mantle cell lymphoma (MCL), a highly aggressive lymphoma, remains unclear. This study was aimed to elucidate the effect of SENP3 in MCL.

Methods

The expression of SENP3 in MCL cells and tissue samples was detected by RT-qPCR, Western blotting or immunohistochemistry. MCL cells with stable SENP3 knockdown were constructed using short hairpin RNAs. Cell proliferation was assessed by CCK-8 assay, and cell apoptosis was determined by flow cytometry. mRNA sequencing (mRNA-seq) was used to investigate the underlying mechanism of SENP3 knockdown on MCL development. A xenograft nude mouse model was established to evaluate the effect of SENP3 on MCL growth in vivo.

Results

SENP3 was upregulated in MCL patient samples and cells. Knockdown of SENP3 in MCL cells inhibited cell proliferation and promoted cell apoptosis. Meanwhile, the canonical Wnt signaling pathway and the expression of Wnt10a were suppressed after SENP3 knockdown. Furthermore, the growth of MCL cells in vivo was significantly inhibited after SENP3 knockdown in a xenograft nude mouse model.

Conclusion

SENP3 participants in the development of MCL and may serve as a therapeutic target for MCL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wilson MR, Barrett A, Cheah CY, et al. How I manage mantle cell lymphoma: indolent versus aggressive disease. Br J Haematol, 2023,201(2):185–198

    Article  PubMed  Google Scholar 

  2. Kumar A, Sha F, Toure A, et al. Patterns of survival in patients with recurrent mantle cell lymphoma in the modern era: progressive shortening in response duration and survival after each relapse. Blood Cancer J, 2019,9(6):50

    Article  PubMed  PubMed Central  Google Scholar 

  3. Jain P, Wang M. Mantle cell lymphoma: 2019 update on the diagnosis, pathogenesis, prognostication, and management. Am J Hematol, 2019,94(6):710–725

    Article  PubMed  Google Scholar 

  4. Zhang Y, Ma Y, Wu G, et al. SENP1 promotes MCL pathogenesis through regulating JAK-STAT5 pathway and SOCS2 expression. Cell Death Discov, 2021,7(1):192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Fernàndez V, Hartmann E, Ott G, et al. Pathogenesis of mantle-cell lymphoma: all oncogenic roads lead to dysregulation of cell cycle and DNA damage response pathways. J Clin Oncol, 2005,23(26):6364–6369

    Article  PubMed  Google Scholar 

  6. Klener P. Mantle cell lymphoma: insights into therapeutic targets at the preclinical level. Expert Opin Ther Targets, 2020,24(10):1029–1045

    Article  CAS  PubMed  Google Scholar 

  7. Zhang H, Chen Z, Miranda RN, et al. TG2 and NF-κB Signaling Coordinates the Survival of Mantle Cell Lymphoma Cells via IL6-Mediated Autophagy. Cancer Res, 2016,76(21):6410–6423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kunz K, Piller T, Müller S. SUMO-specific proteases and isopeptidases of the SENP family at a glance. J Cell Sci, 2018,131(6):jcs211904

    Article  PubMed  Google Scholar 

  9. Gareau JR, Lima CD. The SUMO pathway: emerging mechanisms that shape specificity, conjugation and recognition. Nat Rev Mol Cell Biol, 2010,11(12):861–871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Li J, Liang L, Jiang L, et al. Viral RNA-binding ability conferred by SUMOylation at PB1 K612 of influenza A virus is essential for viral pathogenesis and transmission. PLoS Pathog, 2021,17(2):e1009336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Stokes S, Almire F, Tatham MH, et al. The SUMOylation pathway suppresses arbovirus replication in Aedes aegypti cells. PLoS Pathog, 2020,16(12):e1009134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chang H, Yeh E. SUMO: From Bench to Bedside. Physiol Rev, 2020,100(4):1599–1619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Han Y, Huang C, Sun X, et al. SENP3-mediated deconjugation of SUMO2/3 from promyelocytic leukemia is correlated with accelerated cell proliferation under mild oxidative stress. J Biol Chem, 2010,285(17):12906–12915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Huang C, Han Y, Wang Y, et al. SENP3 is responsible for HIF-1 transactivation under mild oxidative stress via p300 de-SUMOylation. Embo J, 2009,28(18):2748–2762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Nishida T, Yamada Y. The nucleolar SUMO-specific protease SMT3IP1/SENP3 attenuates Mdm2-mediated p53 ubiquitination and degradation. Biochem Biophys Res Commun, 2011,406(2):285–291

    Article  CAS  PubMed  Google Scholar 

  16. Zhou Z, Wang M, Li J, et al. SUMOylation and SENP3 regulate STAT3 activation in head and neck cancer. Oncogene, 2016,35(45):5826–5838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ren YH, Liu KJ, Wang M, et al. De-SUMOylation of FOXC2 by SENP3 promotes the epithelial-mesenchymal transition in gastric cancer cells. Oncotarget, 2014,5(16):7093–7104

    Article  PubMed  PubMed Central  Google Scholar 

  18. Yan S, Sun X, Xiang B, et al. Redox regulation of the stability of the SUMO protease SENP3 via interactions with CHIP and Hsp90. Embo J, 2010,29(22):3773–3786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Louche A, Blanco A, Lacerda TLS, et al. Brucella effectors NyxA and NyxB target SENP3 to modulate the subcellular localisation of nucleolar proteins. Nat Commun, 2023,14(1):102

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wu X, Li JH, Xu L, et al. SUMO specific peptidase 3 halts pancreatic ductal adenocarcinoma metastasis via deSUMOylating DKC1. Cell Death Differ, 2023,30(7):1742–1756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Pérez-Galán P, Dreyling M, Wiestner A. Mantle cell lymphoma: biology, pathogenesis, and the molecular basis of treatment in the genomic era. Blood, 2011,117(1):26–38

    Article  PubMed  PubMed Central  Google Scholar 

  22. Vega F, Davuluri Y, Cho-Vega JH, et al. Side population of a murine mantle cell lymphoma model contains tumour-initiating cells responsible for lymphoma maintenance and dissemination. J Cell Mol Med, 2010,14(6B):1532–1545

    Article  PubMed  Google Scholar 

  23. Chan WK, Williams J, Sorathia K, et al. A novel CAR-T cell product targeting CD74 is an effective therapeutic approach in preclinical mantle cell lymphoma models. Exp Hematol Oncol, 2023,12(1):79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sloan SL, Brown F, Long M, et al. PRMT5 supports multiple oncogenic pathways in mantle cell lymphoma. Blood, 2023,142(10):887–902

    Article  CAS  PubMed  Google Scholar 

  25. Yeh ET, Gong L, Kamitani T. Ubiquitin-like proteins: new wines in new bottles. Gene, 2000,248(1–2):1–14

    Article  CAS  PubMed  Google Scholar 

  26. Hang J, Dasso M. Association of the human SUMO-1 protease SENP2 with the nuclear pore. J Biol Chem, 2002,277(22):19961–19966

    Article  CAS  PubMed  Google Scholar 

  27. Eifler K, Vertegaal ACO. SUMOylation-Mediated Regulation of Cell Cycle Progression and Cancer. Trends Biochem Sci, 2015,40(12):779–793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhao Y, Yang B, Chen D, et al. Combined identification of ARID1A, CSMD1, and SENP3 as effective prognostic biomarkers for hepatocellular carcinoma. Aging (Albany NY), 2021,13(3):4696–4712

    Article  CAS  PubMed  Google Scholar 

  29. Tong Y, Zhang Z, Cheng Y, et al. Hypoxia-induced NFATc3 deSUMOylation enhances pancreatic carcinoma progression. Cell Death Dis, 2022,13(4):413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Long X, Zhao B, Lu W, et al. The Critical Roles of the SUMO-Specific Protease SENP3 in Human Diseases and Clinical Implications. Front Physiol, 2020,11:558220

    Article  PubMed  PubMed Central  Google Scholar 

  31. Gelebart P, Anand M, Armanious H, et al. Constitutive activation of the Wnt canonical pathway in mantle cell lymphoma. Blood, 2008,112(13):5171–5179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Klaus A, Birchmeier W. Wnt signalling and its impact on development and cancer. Nat Rev Cancer, 2008,8(5):387–398

    Article  CAS  PubMed  Google Scholar 

  33. Cao X, Wang X, Zhang W, et al. WNT10A induces apoptosis of senescent synovial resident stem cells through Wnt/calcium pathway-mediated HDAC5 phosphorylation in OAjoints. Bone, 2021,150:116006

    Article  CAS  PubMed  Google Scholar 

  34. Wang J, Yang Q, Tang M, et al. Validation and analysis of expression, prognosis and immune infiltration of WNT gene family in non-small cell lung cancer. Front Oncol, 2022,12:911316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Cesarato N, Schwieger-Briel A, Gossmann Y, et al. Short anagen hair syndrome: Association with mono- and biallelic variants in WNT10A and a genetic overlap with male pattern hair loss. Br J Dermatol, 2023,189(6):741–749

    Article  PubMed  Google Scholar 

  36. Sun X, Fang J, Ye F, et al. Diffuse Large B-Cell Lymphoma Promotes Endothelial-to-Mesenchymal Transition via WNT10A/Beta-Catenin/Snail Signaling. Front Oncol, 2022,12:871788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xi Li.

Ethics declarations

The authors have declared no competing interests in this work.

Additional information

This study was supported by the Chongqing Natural Science Foundation (No. 2023NSCQ-MSX3161 and No. cstc2020jcyj-msxmX1058) and the National Natural Science Foundation of China (No. 81800172).

Supplementary data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, Yn., Zou, Yd., Liu, Zl. et al. SENP3 Promotes Mantle Cell Lymphoma Development through Regulating Wnt10a Expression. CURR MED SCI 44, 134–143 (2024). https://doi.org/10.1007/s11596-024-2829-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11596-024-2829-7

Key words

Navigation