Skip to main content
Log in

FMR1NB Involved in Glioma Tumorigenesis Is a Promising Target for Prognosis and Therapy

  • Published:
Current Medical Science Aims and scope Submit manuscript

Abstract

Objective

Cancer/testis antigen FMR1NB is aberrantly expressed in various types of cancer, but not in normal tissues except for testis. This study aimed to investigate the expression and functional role of FMR1NB in glioma.

Methods

The expression of FMR1NB mRNA and protein was determined using RT-PCR and immunohistochemistry, respectively, in glioma specimens from 83 patients at follow-up. The effects of siRNA-mediated FMR1NB silencing on malignant biological behaviors were evaluated in glioma cell lines A172 and U251.

Results

FMR1NB mRNA and protein expression was detected in 58.8% (77/131) and 46.34% (57/123) of glioma tissues, respectively. FMR1NB protein was positively correlated with World Health Organization grade and found to be an independent prognostic marker for poor outcome. Knockdown of FMR1NB induced apoptosis and suppressed proliferation, adhesion, migration, and invasion by modulating the expression of cyclin A, CDK2, caspase-3, E-cadherin, and N-cadherin in A172 and U251 cells.

Conclusion

Our findings suggest that FMR1NB contributes to the tumorigenesis of glioma cells and may represent a potential prognostic biomarker and an attractive therapeutic target in glioma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ostrom QT, Gittleman H, Liao P, et al. CBTRUS Statistical Report: Primary brain and other central nervous system tumors diagnosed in the United States in 2010–2014. Neuro Oncology, 2017,19(suppl_5):v1–v88

    Article  PubMed  PubMed Central  Google Scholar 

  2. Yang P, Wang Y, Peng X, et al. Management and survival rates in patients with glioma in China (2004–2010): a retrospective study from a single-institution. J Neurooncol, 2013,113(2):259–266

    Article  CAS  PubMed  Google Scholar 

  3. Wang HW, Xu ZK, Song Y, et al. Correlations of MGMT genetic polymorphisms with temozolomide resistance and prognosis of patients with malignant gliomas: a population-based study in China. Cancer Gene Ther, 2017,24(5):215–220

    Article  CAS  PubMed  Google Scholar 

  4. Li K, Lu D, Guo Y, et al. Trends and patterns of incidence of diffuse glioma in adults in the United States, 1973–2014. Cancer Med, 2018,7(10):5281–5290

    Article  PubMed  PubMed Central  Google Scholar 

  5. Ehtesham M, Black KL, Yu JS. Recent Progress in Immunotherapy for Malignant Glioma: Treatment Strategies and Results from Clinical Trials. Cancer Control, 2004,11(3):192–207

    Article  PubMed  Google Scholar 

  6. Yao J, Caballero OL, Yung WKA, et al. Tumor subtype-specific cancer-testis antigens as potential biomarkers and immunotherapeutic targets for cancers. Cancer Immunol Res, 2014,2(4):371–379

    Article  CAS  PubMed  Google Scholar 

  7. Salmaninejad A, Zamani MR, Pourvahedi M, et al. Cancer/Testis Antigens: Expression, Regulation, Tumor Invasion, and Use in Immunotherapy of Cancers. Immunol Invest, 2016,45(7):619–640

    Article  CAS  PubMed  Google Scholar 

  8. Freitas M, Malheiros S, Stávale JN, et al. Expression of Cancer/Testis Antigens is Correlated with Improved Survival in Glioblastoma. Oncotarget, 2013,4(4):636–646

    Article  PubMed  PubMed Central  Google Scholar 

  9. Shi L, Zhang QM, Wei ZD, et al. Expression Status and Prognostic Value of cancer/testis antigen OY-TES-1 in Glioma. Int J Clin Exp Pathol, 2016,9(2):1598–1607

    CAS  Google Scholar 

  10. Li X, Yan J, Fan R, et al. Serum immunoreactivity of cancer/testis antigen OY-TES-1 and its tissues expression in glioma. Oncol Lett, 2017,13(5):3080–3086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. He SJ, Gu YY, Yu L, et al. High expression and frequently humoral immune response of melanoma-associated antigen D4 in glioma. Int J Clin Exp Pathol, 2014,7(5):2350–2360

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Lee SY, Obata Y, Yoshida M, et al. Immunomic analysis of human sarcoma. Proc Natl Acad Sci U S A, 2003,100(5):2651–2656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Park JH, Song MH, Lee CH, et al. Expression of the human cancer/testis antigen NY-SAR-35 is activated by CpG island hypomethylation. Biotechnol Lett, 2011,33(6):1085–1091

    Article  CAS  PubMed  Google Scholar 

  14. Song MH, Kim YR, Bae JH, et al. A cancer/testis antigen, NY-SAR-35, induces EpCAM, CD44, and CD133, and activates ERK in HEK293 cells. Biochem Biophys Res Commun, 2017,484(2):298–303

    Article  CAS  PubMed  Google Scholar 

  15. Song MH, Kim YR, Lee JW, et al. Cancer/testis antigen NY-SAR-35 enhances cell proliferation, migration, and invasion. Int J Oncol, 2016,48(2):569–576

    Article  CAS  PubMed  Google Scholar 

  16. Song M, Kim Y, Bae J, et al. Effect of cancer/testis antigen NYSAR35 on the proliferation, migration and invasion of cancer cells. Oncol Lett, 2017,13(2):784–790

    Article  CAS  PubMed  Google Scholar 

  17. Komori T. The 2016 WHO Classification of Tumours of the Central Nervous System: The Major Points of Revision. Neurol Med Chir (Tokyo), 2017,57(7):301–311

    Article  Google Scholar 

  18. Zhang QM, He SJ, Shen N, et al. Overexpression of MAGE-D4 in colorectal cancer is a potentially prognostic biomarker and immunotherapy target. Int J Clin Exp Pathol, 2014,7(7):3918–3927

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Luo B, Yun X, Fan R, et al. Cancer testis antigen OY-TES-1 expression and serum immunogenicity in colorectal cancer: its relationship to clinicopathological parameters. Int J Clin Exp Pathol, 2013,6(12):2835–2845

    PubMed  PubMed Central  Google Scholar 

  20. Han CP, Lee MY, Tzeng SL, et al. Nuclear Receptor Interaction Protein (NRIP) expression assay using human tissue microarray and immunohistochemistry technology confirming nuclear localization. J Exp Clin Cancer Res, 2008,27(1):1–7

    Article  CAS  Google Scholar 

  21. Fu J, Luo B, Guo WW, et al. Down-regulation of cancer/testis antigen OY-TES-1 attenuates malignant behaviors of hepatocellular carcinoma cells in vitro. Int J Clin Exp Pathol, 2015,8(7):7786–7797

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Cen YY, Guo WW, Luo B, et al. Knockdown of OY-TES-1 by RNAi causes cell cycle arrest and migration decrease in bone marrow-derived mesenchymal stem cells. Cell Biology International, 2012,36(10):917–922

    Article  CAS  PubMed  Google Scholar 

  23. Fabrício F. Costa, Blanc K L, et al. Concise Review: Cancer/Testis Antigens, Stem Cells, and Cancer. Stem Cells, 2010,25(3):707–711

    Google Scholar 

  24. Ghafouri-Fard S, Modarressi MH. Cancer-testis antigens: potential targets for cancer immunotherapy. Arch Iran Med, 2009,12(4):395–404

    PubMed  Google Scholar 

  25. Salmaninejad A, Zamani MR, Pourvahedi M, et al. Cancer/Testis Antigens: Expression, Regulation, Tumor Invasion, and Use in Immunotherapy of Cancers. Immunol Invest, 2016,45(7):619–640

    Article  CAS  PubMed  Google Scholar 

  26. Scanlan MJ, Simpson AJG, Old LJ. The cancer/testis genes: Review, standardization, and commentary. Cancer Immun, 2004,4(1):1

    PubMed  Google Scholar 

  27. Kim YD, Park HR, Song MH, et al. Pattern of cancer/testis antigen expression in lung cancer patients. Int J Mol Med, 2012,29(4):656–662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Malumbres M, Barbacid M. Cell cycle, CDKs and cancer: a changing paradigm. Nat Rev Cancer, 2009,9(3):153–166

    Article  CAS  PubMed  Google Scholar 

  29. Dulic V, Lees E, Reed S. Association of human cyclin E with a periodic G1-S phase protein kinase. Science, 1992,257(5078):1958–1961

    Article  CAS  PubMed  Google Scholar 

  30. Koff A, Giordano A, Desai D, et al. Formation and activation of a cyclin E-cdk2 complex during the G1 phase of the human cell cycle. Science, 1992,257(5077):1689–1694

    Article  CAS  PubMed  Google Scholar 

  31. Hinds PW, Mittnacht S, Dulic V, et al. Regulation of retinoblastoma protein functions by ectopic expression of human cyclins. Cell, 1992,70(6):993–1006

    Article  CAS  PubMed  Google Scholar 

  32. Hatakeyama M, Brill JA, Fink GR, et al. Collaboration of G1 cyclins in the functional inactivation of the retinoblastoma protein. Genes Dev, 1994,8(15):1759–1771

    Article  CAS  PubMed  Google Scholar 

  33. Pines J, Hunter T. Human cyclin A is adenovirus E1A-associated protein p60 and behaves differently from cyclin B. Nature, 1990,346(6286):760–763

    Article  CAS  PubMed  Google Scholar 

  34. Tsai LH, Harlow E, Meyerson M. Meyerson, Isolation of the human cdk2 gene that encodes the cyclin A- and adenovirus E1A-associated p33 kinase. Nature, 1991, 353(6340):174–177

    Article  CAS  PubMed  Google Scholar 

  35. Elledge SJ, Richman R, Hall FL, et al. CDK2 encodes a 33-kDa cyclin A-associated protein kinase and is expressed before CDC2 in the cell cycle. Proc Natl Acad Sci USA, 1992,89(7):2907–2911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Cardoso MC, Leonhardt H, Nadal-Ginard B. Reversal of terminal differentiation and control of DNA replication: cyclin A and Cdk2 specifically localize at subnuclear sites of DNA replication. Cell, 1993,74(6):979–992

    Article  CAS  PubMed  Google Scholar 

  37. Heuvel SVD, Harlow E. Distinct roles for Cyclin-dependent kinases in cell cycle control. Science, 1994,262(5142):2050–2054

    Article  Google Scholar 

  38. Ishimi Y, Komamura-Kohno Y, You ZY, et al. Inhibition of Mcm4,6,7 Helicase Activity by Phosphorylation with Cyclin A/Cdk2. J Biol Chem, 2000,275(21):16235–16241

    Article  CAS  PubMed  Google Scholar 

  39. Omar F, Zhengying W, Knudsen KE, et al. Nuclear targeting of cyclin-dependent kinase 2 reveals essential roles of cyclin-dependent kinase 2 localization and cyclin E in vitamin D-mediated growth inhibition. Endocrinology, 2010(3):896–908

  40. Kawana H, Tamaru JI, Tanaka T, et al. Role of p27Kip1 and Cyclin-Dependent Kinase 2 in the Proliferation of Non-Small Cell Lung Cancer. Am J Pathol, 1998,153(2):505–513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Li Y, Zhang J, Gao W, et al. Insights on Structural Characteristics and Ligand Binding Mechanisms of CDK2. Int J Mol Sci, 2015,16(12):9314–9340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ali S, Heathcote DA, Kroll SHB, et al. The development of a selective cyclin-dependent kinase inhibitor that shows antitumor activity. Cancer Res, 2009,69(15):6208–6215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zou H, Henzel WJ, Liu X, et al. Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome c-dependent. Cell, 1997,90(3):405–413.

    Article  CAS  PubMed  Google Scholar 

  44. Nuez G, Benedict MA, Hu Y, et al. Caspases: the proteases of the apoptotic pathway. Oncogene, 1998,17(25):3237–3245.

    Article  Google Scholar 

  45. Kim B, Srivastava SK, Kim SH. Caspase-9 as a therapeutic target for treating cancer. Expert Opin Ther Targets, 2015,19(1):113–127

    Article  CAS  PubMed  Google Scholar 

  46. Zhou Q, Liao H, Huo Z, et al. Cancer/Testis Antigens Trigger Epithelial-Mesenchymal Transition and Genesis of Cancer Stem-Like Cells. Curr Pharm Des, 2015,21(10):1292–1300

    Article  PubMed  CAS  Google Scholar 

  47. Yao D, Dai C, Peng S. Mechanism of the Mesenchymal-Epithelial Transition and Its Relationship with Metastatic Tumor Formation. 2011,9(12):1608–1620

  48. Park JH, Song MH, Lee CH, et al. Expression of the human cancer/testis antigen NY-SAR-35 is activated by CpG island hypomethylation. Biotechnol Lett, 2011,33(6):1085–1091

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shao-wen Xiao or Qing-mei Zhang.

Ethics declarations

All authors declare that they have no competing interests.

Additional information

This work was supported by grants from the National Natural Science Foundation of China (No. 81960453, No. 81860445), Natural Science Foundation of Guangxi Province (No. 2022GXNSFAA035639, No. 2018GXNSFAA281050, No. 2018GXNSFAA050151), Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University) and Ministry of Education (No. GK2018-09, No. GKE 2019-08, No. GKE-ZZ202006), and Guangxi First-class Discipline Construction Project in Basic Medical Sciences (No. GXMUBMSTC-T07, No. GXMUBMSTCF-G04).

Supplementary Materials

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bi, Sq., Peng, Y., Wei, Zd. et al. FMR1NB Involved in Glioma Tumorigenesis Is a Promising Target for Prognosis and Therapy. CURR MED SCI 42, 803–816 (2022). https://doi.org/10.1007/s11596-022-2586-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11596-022-2586-4

Key words

Navigation