Skip to main content
Log in

Relationship between Volatile Anesthetics and Tumor Progression: Unveiling the Mystery

  • Published:
Current Medical Science Aims and scope Submit manuscript

Summary

A series of factors can be involved in the perioperative period to cause an increase in cancer-related mortality. Unfortunately, volatile anesthesia might aggravate the deleterious effects. In this article, we review the association of diverse volatile anesthetic agents with immune system and cancer cell biology, and examine the effects on angeogenesis and postoperative metastasis or recurrence. Isoflurane, haloflurane and enflurane enhance immunosuppression and upregulate hypoxia-inducible-factor 1 and matrix metalloproteinases, leading to the cancer malignant progression, whereas roles of desflurane and sevoflurane are still unclear. As the effects of volatile anesthetics on tumor immunity have been known, it will be beneficial for using selective drugs into anesthesia and operation in cancer patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Melamed R, Rosenne E, Shakhar K, et al. Marginating pulmonary-NK activity and resistance to experimental tumor metastasis: Suppression by surgery and the prophylactic use of beta-adrenergic and prostaglandin synthesis inhibitor. Brain Behav Immun, 2005,19(2): 114–126

    Article  CAS  PubMed  Google Scholar 

  2. Yang Q, Goding SR, Hokland ME, et al. Antitumor activity of NK cells. Immunol Res, 2006, 36(1-3):13–25

    Article  PubMed  Google Scholar 

  3. Zamai L, Ponti C, Mirandola P, et al. NK cells and cancer. J Immunol, 2007,178(7):4011–4016

    Article  CAS  PubMed  Google Scholar 

  4. Brittenden J, Heys SD, Ross J, et al. Natural killer cells and cancer. Cancer, 1996,77(7):1226–1243

    Article  CAS  PubMed  Google Scholar 

  5. Ben-Eliyahu S, Page GG, Yirmiya R, et al. Evidence that stress and surgical interventions promote tumor development by suppressing natural killer cell activity. Int J Cancer, 1999,80(6):880–888

    Article  CAS  PubMed  Google Scholar 

  6. Koda K, Saito N, Takiguchi N, et al. Preoperative natural killer cell activity: correlation with distant metastases in curatively research colorectal carcinomas. Int Surg, 1997,82(2):190–193

    CAS  PubMed  Google Scholar 

  7. Koda K, Saito N, Oda K, et al. Natural killer cell activity and distant metastasis in rectal cancers treated surgically with and without neoadjuvant chemoradiotherapy. J Am Coll Surg, 2003,197(2):254–260

    Article  PubMed  Google Scholar 

  8. Schantz SP, Brown BW, Lira E, et al. Evidence for the role of natural immunity in the control of metastatic spread of head and neck cancer, 1987,25(2):141–148

    CAS  Google Scholar 

  9. Shakhar G, Ben-Eliyahu S. In vivo beta-adrenergic stimulation suppresses natural killer activity and compromises resistance to tumor metastasis in rats. J Immunol, 1998,160(7):3251–3258

    CAS  PubMed  Google Scholar 

  10. Penn I. The effect of immunosuppression on pre-existing cancers. Transplant Proc, 1993, 25(1 Pt 2):1380–1382

    CAS  PubMed  Google Scholar 

  11. Tavare AN, Perry NJ, Benzonana LL, et al. Cancer recurrence after surgery: direct and indirect effects of anesthetic agents. Int J Cancer, 2012,130(6):1237–1250

    Article  CAS  PubMed  Google Scholar 

  12. Loop T, Dovi-Akue D, Frick M, et al. Volatile anesthetics induce caspase-dependent, mitochondriamediated apoptosis in human T lymphocytes in vitro. Anesthesiology, 2005,102(6):1147–1157

    Article  CAS  PubMed  Google Scholar 

  13. Wei H, Liang G, Yang H, et al. The common inhalational anesthetic isofurane induces apoptosis via activation of inositol 1, 4, 5-trisphosphate receptors. Anesthesiology, 2008,108(2):251–260

    Article  CAS  PubMed  Google Scholar 

  14. Woo JH, Baik HJ, Kim CH, et al. Effect of Propofol and Desflurane on Immune Cell Populations in Breast Cancer Patients: A Randomized Trial. J Korean Med Sci, 2015,30(10):1503–8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kotani N, Hashimoto H, Sessler DI, et al. Intraoperative modulation of alveolar macrophage function during isoflurane and propofol anesthesia. Anesthesiology, 1998,89(5):1125–1132

    Article  CAS  PubMed  Google Scholar 

  16. Kotani N, Takahashi S, Sessler DI, et al. Volatile anesthetics augment expression of proinflammatory cytokines in rat alveolar macrophages during mechanical ventilation. Anesthesiology, 1999,91(1):187–197

    Article  CAS  PubMed  Google Scholar 

  17. Kotani N, Hashimoto H, Sessler DI, et al. Expression of genes for proinflammatory cytokines in alveolar macrophages during propofol and isoflurane anesthesia. Anesth Analg, 1999,89(5):1250–1256

    Article  CAS  PubMed  Google Scholar 

  18. Markovic SN, Murasko DM. Anesthesia inhibits interferon-induced natural killer cell cytotoxicity viainduction of CD8+ suppressor cells. Cell Immunol, 1993,151(2):474–480

    Article  CAS  PubMed  Google Scholar 

  19. Tavare AN, Perry NJ, Benzonana LL, et al. Cancer recurrence after surgery: direct and indirect effects of anesthetic agents. Int J Cancer, 2012,130(6):1237–1250

    Article  CAS  PubMed  Google Scholar 

  20. Melamed R, Bar-Yosef S, Shakhar G, et al. Suppression of natural killer cell activity and promotion of tumor metastasis by ketamine, thiopental, and halothane, but not by propofol: mediating mechanisms and prophylactic measures. Anesth Analg, 2003,97(5):1331–1339

    Article  CAS  PubMed  Google Scholar 

  21. Mitsuhata H, Shimizu R, Yokoyama MM. Suppressive effects of volatile anesthetics on cytokine release in human peripheral blood mononuclear cells. Int J Immunopharmacol, 1995,17(6):529–534

    Article  CAS  PubMed  Google Scholar 

  22. Flondor M, Hofstetter C, Boost KA, et al. Isoflurane inhalation after induction of endotoxemia in rats attenuates the systemic cytokine response. Eur Surg Res, 2008,40(1):1–6

    Article  CAS  PubMed  Google Scholar 

  23. Pirbudak Cocelli L, Ugur MG, Karadasli H. Comparison of effects of low fow sevofurane and desfurane anesthesia on neutrophil and T-cell populations. Curr Ther Res Clin Exp, 2012, 73(1-2):41–51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Möbert J, Zahler S, Becker BF, et al. Inhibition of neutrophil activation by volatile anesthetics decreases adhesion to cultured human endothelial cells. Anesthesiology, 1999,90(5):1372–1381

    Article  PubMed  Google Scholar 

  25. Kowalski C, Zahler S, Becker BF, et al. Halothane, isoflurane, and sevoflurane reduce postischemic adhesion of neutrophils in the coronary system. Anesthesiology, 1997,86(1):188–195

    Article  CAS  PubMed  Google Scholar 

  26. Heindl B, Reichle FM, Zahler S, et al. Sevoflurane and isoflurane protect the reperfused guinea pig heart by reducing postischemic adhesion of polymorphonuclear neutrophils. Anesthesiology, 1999,91(2):521–530

    Article  CAS  PubMed  Google Scholar 

  27. Cho JS, Lee MH, Kim SI, et al. The Effects of Perioperative Anesthesia and Analgesia on Immune Function in Patients Undergoing Breast Cancer Resection: A Prospective Randomized Study. Int J Med Sci, 2017,14(10):970–976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Tazawa K, Koutsogiannaki S, Chamberlain M, et al. The effect of different anesthetics on tumor cytotoxicity by natural killer cells. Toxicol Lett, 2017,266:23–31

    Article  CAS  PubMed  Google Scholar 

  29. Inada T, Yamanouchi Y, Jomura S, et al. Effect of propofol and isoflurane anaesthesia on the immune response to surgery. Anaesthesia, 2004,59(10):954–959

    Article  CAS  PubMed  Google Scholar 

  30. Deegan CA, Murray D, Doran P, et al. Anesthetic technique and the cytokine and matrix metalloproteinase response to primary breast cancer surgery. Reg Anesth Pain Med, 2010,35(6):490–495

    Article  PubMed  Google Scholar 

  31. Schneemilch CE, Hachenberg T, Ansorge S, et al. Effects of different anaesthetic agents on immune cell function in vitro. Eur J Anaesthesiol, 2005,22(8):616–623

    Article  CAS  PubMed  Google Scholar 

  32. Goto Y, Ho SL, McAdoo J, et al. General versus regional anaesthesia for cataract surgery: effects on neutrophilapoptosis and the postoperative proinflammatory state. Eur J Anaesthesiol, 2000,17(8):474–480

    Article  CAS  PubMed  Google Scholar 

  33. Oh CS, Lee J, Yoon TG, et al. Effect of Equipotent Doses of Propofol versus Sevoflurane Anesthesia on Regulatory T Cells after Breast Cancer Surgery. Anesthesiology, 2018,129(5):921–931

    Article  CAS  PubMed  Google Scholar 

  34. Generali D, Berruti A, Brizzi M, et al. Hypoxia-inducible factor-1alpha expression predicts a poor response to primary chemoendocrine therapy and disease-free survival in primary human breast cancer. Clin Cancer Res, 2006,12(15):4562–4568

    Article  CAS  PubMed  Google Scholar 

  35. Rohwer N, Lobitz S, Daskalow K, et al. HIF-1alpha determines the metastatic potential of gastric cancer cells. Br J Cancer, 2009,100(5):772–781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Dai C, Gao Q, Qiu S, et al. Hypoxia-inducible factor-1 alpha, in association with inflammation, angiogenesis and MYC, is a critical prognostic factor in patients with HCC after surgery. BMC Cancer, 2009,9:418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Baba Y, Nosho K, Shima K, et al. HIF1A Overexpression is associated with poor prognosis in a cohort of 731 colorectal cancers. Am J Pathol, 2010,176(5):2292–2301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Osada R, Horiuchi A, Kikuchi N, et al. Expression of hypoxia-inducible factor 1alpha, hypoxia-inducible factor 2alpha, and von Hippel-Lindau protein in epithelial ovarian neoplasms and allelic loss of von Hippel-Lindau gene: nuclear expression of hypoxia-inducible factor1alpha is an independent prognostic factor in ovarian carcinoma. Hum Pathol, 2007,38(9):1310–1320

    Article  CAS  PubMed  Google Scholar 

  39. Unwith S, Zhao H, Hennah L, et al. The potential role of HIF on tumor progression and dissemination. Int J Cancer, 2015,136(11):2491–2503

    Article  CAS  PubMed  Google Scholar 

  40. Huang H, Benzonana LL, Zhao H, et al. Prostate cancer cell malignancy via modulation of HIF-1α pathway with isoflurane and propofol alone and in combination. Br J Cancer, 2014,111(7):1338–1349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Benzonana LL, Perry NJ, Watts HR, et al. Isoflurane, a commonly used volatile anesthetic, enhances renal cancer growth and malignant potential via the hypoxiainducible factor cellular signaling pathway in vitro. Anesthesiology, 2013,119(3):593–605

    Article  CAS  PubMed  Google Scholar 

  42. Wang C, Weihrauch D, Schwabe D, et al. Extracellular signalregulated kinases trigger isoflurane preconditioning concomitant with upregulation of hypoxia-inducible factor-1alpha and vascular endothelial growth factor expression in rats. Anesth Analg, 2006,103(2):281–288

    Article  CAS  PubMed  Google Scholar 

  43. Kawaraguchi Y, Horikawa YT, Murphy AN, et al. Volatile anesthetics protect cancer cells against tumor necrosis factor-related apoptosis-inducing ligandinduced apoptosis via caveolins. Anesthesiology, 2011,115(3):499–508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kvolik S, Glavas-Obrovac L, Bares V, et al. Effects of inhalation anesthetics halothane, sevoflurane, and isoflurane on human cell lines. Life Sci, 2005,77(19):2369–2383

    Article  CAS  PubMed  Google Scholar 

  45. Shi QY, Zhang SJ, Liu L, et al. Sevoflurane promotes the expansion of glioma stem cells through activation of hypoxia-inducible factors in vitro. Br J Anaesth, 2015,114(5):825–830

    Article  CAS  PubMed  Google Scholar 

  46. Ferrell JK, Cattano D, Brown RE, et al. The effects of anesthesia on the morphoproteomic expression of head and neck squamous cell carcinoma: a pilot study. Transl Res, 2015,166(6):674–682

    Article  CAS  PubMed  Google Scholar 

  47. Liang H, Yang CX, Zhang B, et al. Sevoflurane suppresses hypoxia-induced growth and metastasis of lung cancer cells via inhibiting hypoxia-inducible factor-1α. J Anesth, 2015,29(6):821–830

    Article  PubMed  Google Scholar 

  48. Iwasaki M, Zhao H, Jaffer T, et al. Volatile anaesthetics enhance the metastasis related cellular signalling including CXCR2 of ovarian cancer cells. Oncotarget, 2016,7(18):26042–26056

    Article  PubMed  PubMed Central  Google Scholar 

  49. Luo X, Zhao H, Hennah L, et al. Impact of isoflurane on malignant capability of ovarian cancer in vitro. Br J Anaesth, 2015,114(5):831–839

    Article  CAS  PubMed  Google Scholar 

  50. Müller-Edenborn B, Roth-Zgraggen B, Bartnicka K, et al. Volatile anesthetics reduce invasion of colorectal cancer cells through down-regulation of matrix metalloproteinase-9. Anesthesiology, 2012,117(2):293–301

    Article  CAS  PubMed  Google Scholar 

  51. Bonello S, Za¨hringer C, BelAiba R, et al. Reactive oxygen species activate the HIF-1alpha promoter via a functional NFkappaB site. Arterioscler Thromb Vasc Biol, 2007,27(4):755–761

    Article  CAS  PubMed  Google Scholar 

  52. Maranchie J, Zhan Y. Nox4 is critical for hypoxiainducible factor 2-alpha transcriptional activity in von Hippel-Lindau-deficient renal cell carcinoma. Cancer Res, 2005,65(20):9190–9193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Müllenheim J, Ebel D, Frässdorf J, et al. Isoflurane preconditions myocardium against infarction via release of free radicals. Anesthesiology, 2002,96(4):934–940

    Article  PubMed  Google Scholar 

  54. Hanouz J, Zhu L, Lemoine S, et al. Reactive oxygen species mediate sevoflurane-and desflurane-induced preconditioning in isolated human right atria in vitro. Anesth Analg, 2007,105(6):1534–1539

    Article  CAS  PubMed  Google Scholar 

  55. Looney M, Doran P, Buggy DJ. Effect of anesthetic technique on serum vascular endothelial growth factor C and transforming growth factor beta in women undergoing anesthesia and surgery for breast cancer. Anesthesiology, 2010,113(5):1118–1125

    Article  CAS  PubMed  Google Scholar 

  56. Iwasaki M, Zhao H, Jaffer T, et al. Volatile anaesthetics enhance the metastasis related cellular signalling including CXCR2 of ovarian cancer cells. Oncotarget, 2016,7(18):26042–26056

    Article  PubMed  PubMed Central  Google Scholar 

  57. Jun IJ, Jo JY, Kim JI, et al. Impact of anesthetic agents on overall and recurrence-free survival in patients undergoing esophageal cancer surgery: A retrospective observational study. Sci Rep, 2017,7(1):14020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Shapiro J, Jersky J, Katzav S, et al. Anesthetic drugs accelerate the progression of postoperative metastases of mouse tumors. J Clin Invest, 1981,68(3):678–685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Moudgil GC, Singal DP. Halothane and isoflurane enhance melanoma tumour metastasis in mice. Can J Anaesth, 1997,44(1):90–94

    Article  CAS  PubMed  Google Scholar 

  60. Elias KM, Kang S, Liu X, et al. Anesthetic selection and disease-free survival following optimal primary cytoreductive surgery for stage III epithelial ovarian cancer. Ann Surg Oncol, 2015,22(4):1341–1348

    Article  PubMed  Google Scholar 

  61. Liang H, Yang CX, Zhang B, et al. Sevoflurane attenuates platelets activation of patients undergoing lung cancer surgery and suppresses platelets-induced invasion of lung cancer cells. J Clin Anesth, 2016,35:304–312

    Article  CAS  PubMed  Google Scholar 

  62. Ecimovic P, McHugh B, Murray D, et al. Effects of sevofurane on breast cancer cell function in vitro. Anticancer Res, 2013,33(10):4255–4260

    CAS  PubMed  Google Scholar 

  63. Deegan CA, Murray D, Doran P, et al. Effect of anaesthetic technique on oestrogen receptor-negative breast cancer cell function in vitro. Br J Anaesth, 2009,103(5):685–690

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiao, B., Yang, C., Huang, Nn. et al. Relationship between Volatile Anesthetics and Tumor Progression: Unveiling the Mystery. CURR MED SCI 38, 962–967 (2018). https://doi.org/10.1007/s11596-018-1970-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11596-018-1970-6

Key words

Navigation