Skip to main content
Log in

Computational analysis reveals microRNA-mRNA regulatory network in esophageal squamous cell carcinoma

  • Published:
Journal of Huazhong University of Science and Technology [Medical Sciences] Aims and scope Submit manuscript

Abstract

MicroRNAs (miRNAs) are known to regulate post-transcriptional gene expression. They are involved in carcinogenesis and tumor progression. The aim of this study was to explore the microRNA-mRNA regulatory network in esophageal squamous cell carcinoma (ESCC) using comprehensive computational approaches. In this study we have selected a total of 11 miRNAs from one previously reported study in ESCC. The mRNA targets of these miRNAs were predicted using various algorithms. The expression profiles of these mRNA targets were identified on DNA microarray experiment dataset across ESCC tissue samples. Based on the miRNA-mRNA regulatory relationships, the network was inferred. A total of 23 miRNA-mRNA regulatory interactions, with 11 miRNAs and 13 mRNA targets, were inferred in ESCC. The miRNA-mRNA regulatory network with increased confidence provides insights into the progression of ESCC and may serve as a biomarker for prognosis or the aggressiveness of ESCC. However, the results should be examined with further experimental validation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kamangar F. Patterns of cancer incidence, mortality, and prevalence across five continents: defining priorities to reduce cancer disparities in different geographic regions of the world. J Clin Oncol, 2006,24(14):2137–2150

    Article  PubMed  Google Scholar 

  2. Jemal A, Siegel R, Xu J, et al. Cancer statistics, 2010. CA Cancer J Clin, 2010,60(5):277–300

    Article  PubMed  Google Scholar 

  3. Bushati N, Cohen S. microRNA functions. Annu Rev Cell Dev Biol, 2007,2(3):175–205

    Article  Google Scholar 

  4. Baek D, Villén J, Shin C, et al. The impact of microRNAs on protein output. Nature, 2008,455(7209):64–71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bartel D. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 2004,116(2):281–297

    Article  CAS  PubMed  Google Scholar 

  6. Calin G, Dumitru C. Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci USA, 2002,99(24):15524–15529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Davis-Dusenbery B, Hata A. MicroRNA in ancer: The involvement of aberrant microrna biogenesis regulatory pathways. Genes Cancer, 2010,1(11):1100–1114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Djuranovic S, Nahvi A, Green R. miRNA-mediated gene silencing by translational repression followed by mRNA deadenylation and decay. Science, 2012,336(6078):237–240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Fu J, Tang W, Du P, et al. Identifying microRNA-mRNA regulatory network in colorectal cancer by a combination of expression profile and bioinformatics analysis. BMC Syst Biol, 2012,6:68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Yang D, Sun Y, Hu L, et al. Integrated analyses identify a master microRNA regulatory network for the mesenchymal subtype in serous ovarian cancer. Cancer Cell, 2013,23(2):186–199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Mathé E A, Nguyen GH, Bowman ED, et al. MicroRNA expression in squamous cell carcinoma and adenocarcinoma of the esophagus: associations with survival. Clin Cancer Res, 2009,15(19):6192–6200

    Article  PubMed  PubMed Central  Google Scholar 

  12. Kozomara A, Griffiths-Jones S. miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res, 2014,42(D):68–73

    Article  Google Scholar 

  13. John B, Enright AJ, Aravin A, et al. Human MicroRNA targets. PLoS Biol, 2004,2(11):e363

    Article  Google Scholar 

  14. Krek A, Grün D, Poy MN, et al. Combinatorial microRNA target predictions. Nat Genet, 2005,37(5):495–500

    Article  CAS  PubMed  Google Scholar 

  15. Hofacker I, Fontana W. Fast folding and comparison of RNA secondary structures. Monatshefte Fuer Chemie, 1996,125:167–188

    Article  Google Scholar 

  16. Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell, 2005,120(1):15–20

    Article  CAS  PubMed  Google Scholar 

  17. Shannon P, Markiel A, Ozier O, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res, 2003,13(11):2498–2504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hu N, Clifford RJ, Yang HH, et al. Genome wide analysis of DNA copy number neutral loss of heterozygosity (CNNLOH) and its relation to gene expression in esophageal squamous cell carcinoma. BMC Genomics, 2010,11:576

    Article  PubMed  PubMed Central  Google Scholar 

  19. Yan W, Shih JH, Rodriguez-Canales J, et al. Identification of unique expression signatures and therapeutic targets in esophageal squamous cell carcinoma. BMC Res Notes, 2012,5:73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hong F, Breitling R, McEntee CW, et al. RankProd: a bioconductor package for detecting differentially expressed genes in meta-analysis. Bioinformatics, 2006,22:2825–2827

    Article  CAS  PubMed  Google Scholar 

  21. Alder H, Taccioli C, Chen H, et al. Dysregulation of miR-31 and miR-21 induced by zinc deficiency promotes esophageal cancer. Carcinogenesis, 2012,33(9):1736–1744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Feber A, Xi L, Luketich J. MicroRNA expression profiles of esophageal cancer. J Thorac Cardiovasc Surg, 2008,49(2):255–260

    Article  Google Scholar 

  23. Ma WJ, Lv GD, Tuersun A, et al. Role of microRNA-21 and effect on PTEN in Kazakh’s esophageal squamous cell carcinoma. Mol Biol Rep, 2011,38(5):3253–3260

    Article  CAS  PubMed  Google Scholar 

  24. Hamano R, Miyata H, Yamasaki M. Overexpression of miR-200c induces chemoresistance in esophageal cancers mediated through activation of the Akt signaling pathway. Clin Cancer Res, 2011,17(9):3029–3038

    Article  CAS  PubMed  Google Scholar 

  25. Romania P, Lulli V, Pelosi E, et al. MicroRNA 155 modulates megakaryopoiesis at progenitor and precursor level by targeting Ets-1 and Meis1 transcription factors. Br J Haematol, 2008,143(4):570–580

    CAS  PubMed  Google Scholar 

  26. Sethupathy P, Megraw M, Hatzigeorgiou A. A guide through present computational approaches for the identification of mammalian microRNA targets. Nat Methods, 2006,3(11):1–6

    Article  Google Scholar 

  27. Ritchie W, Flamant S, Rasko JEJ. Predicting microRNA targets and functions: traps for the unwary. Nat Methods, 2009,6(6):397–398

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-guo Rao  (饶智国).

Additional information

This project was supported by grants from Natural Science Foundation of Hubei Province, China (No. 2010CDB09204) and Youth Dawn Plan of Science and Technology in Wuhan, China (No. 201150431137).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, J., Zhang, Bc., Yu, Lf. et al. Computational analysis reveals microRNA-mRNA regulatory network in esophageal squamous cell carcinoma. J. Huazhong Univ. Sci. Technol. [Med. Sci.] 36, 834–838 (2016). https://doi.org/10.1007/s11596-016-1671-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11596-016-1671-y

Keywords

Navigation