Skip to main content

Advertisement

Log in

Microstructure and Mechanical Properties of ZrCx-NbCy-Cu Composites by Reactive Infiltration at 1 300 °C

  • Advanced Materials
  • Published:
Journal of Wuhan University of Technology-Mater. Sci. Ed. Aims and scope Submit manuscript

Abstract

ZrCx-NbCy-Cu composites were fabricated by pressure-less reactive infiltration of Zr-Cu binary melts into porous NbC preforms at 1 300 °C. The effect of Zr content in the infiltrator on microstructure of the as-synthesized composites was studied. Mechanical properties of the composites were reported. A partial displacement of Nb atoms in NbC by Zr atoms from Zr-Cu melt occurs during the reaction between Zr-Cu melt and porous NbC preform. The formation of a core-shell structure suggests the reaction is mainly a dissolution-precipitation type. NbC dissolves into Zr-Cu melt, from which the (Nb,Zr)Cz phase precipitates and grows. With increasing Zr content in the Zr-Cu infiltrator, the reaction is enhanced and the infiltration is easily chocked. ZrCx-NbCy-Cu composite is synthesized using Zr14Cu51 infiltrator. The flexural strength and fracture toughness of ZrCx-NbCy-Cu composite reach 637 MPa and 12.7 MPa·m1/2, respectively. And the improved toughness is probably attributed to residual Cu phase and plate-like NbxCy phases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Opeka M M, Talmy I G, Wuchina E J, et al. Mechanical, Thermal, and Oxidation Properties of Refractory Hafnium and Zirconium Compounds[J]. J. Eur. Ceram. Soc., 1999, 19(13): 2 405–2 414

    Article  CAS  Google Scholar 

  2. Upadhya K Y, Yang J M, Hoffman W P. Advanced Materials for Ultrahigh Temperature Structural Applications Above 2 000 °C[R]. Air Force Research Laboratory, 1997

  3. Pierson H O. Handbook of Refractory Carbides and Nitrides: Properties, Characteristics, Processing and Applications[M]. Westwood: William Andrew, 1996

    Google Scholar 

  4. Caccia M, Tabandeh-Khorshid M, Itskos G, et al. Ceramic-metal Composites for Heat Exchangers in Concentrated Solar Power Plants[J]. Nature, 2018, 562(7727): 406–409

    Article  CAS  Google Scholar 

  5. Yang H T, Zhang J, Li J G, et al. Densification and Structure Evolution of ZrB2-ZrO2 Composites Prepared by Plasma Activated Sintering using ZrB2@ZrO2 Powder[J]. J. Wuhan Univ. Technol. -Mater. Sci. Ed., 2021, 36(2): 215–222

    Article  CAS  Google Scholar 

  6. Wei B, Wang Y, Zhao Y, et al. Effect of NbC Content on Microstructure and Mechanical Properties of W-NbC Composites[J]. Int. J. Refract. Met. Hard Mater., 2018, 70: 66–76

    Article  CAS  Google Scholar 

  7. Binner J, Porter M, Baker B, et al. Selection, Processing, Properties and Applications of Ultra-high Temperature Ceramic Matrix Composites, UHTCMCs-a Review[J]. Int. Mater. Rev., 2019: 1–56

  8. Shabalin I L. Ultra-high Temperature Materials II: Refractory Carbides I (Ta, Hf, Nb and Zr Carbides)[M]. Berlin: Springer, 2019

    Book  Google Scholar 

  9. He C, Stangle G C. The Mechanism and Kinetics of the Niobium-Carbon Reaction under Self-propagating High-temperature Synthesis-like Conditions[J]. J. Mater. Res., 1995, 10(11): 2 829–2 841

    Article  CAS  Google Scholar 

  10. Wei W, Wang H, Gao Z, et al. Microstructure Evolution of As-cast Nb-Ti-C Alloys[J]. Trans. Nonferrous Met. Soc. China, 2009, 19: s440–s443

    Article  CAS  Google Scholar 

  11. Wang X, Liu J, Kan Y, et al. Effect of Solid Solution Formation on Densification of Hot-pressed ZrC Ceramics with MC (M=V, Nb, and Ta) Additions[J]. J. Eur. Ceram. Soc., 2012, 32(8): 1 795–1 802

    Article  CAS  Google Scholar 

  12. Wang X, Guo W, Kan Y, et al. Densification Behavior and Properties of Hot-pressed ZrC Ceramics with Zr and Graphite Additives[J]. J. Eur. Ceram. Soc., 2011, 31(6): 1 103–1 111

    Article  Google Scholar 

  13. Lidman W G, Hamjian H J. Reactions During Sintering of a Zirconium Carbide-Niobium Cermet[J]. J. Am. Ceram. Soc., 1952, 35(9): 236–240

    Article  CAS  Google Scholar 

  14. Ocak B C, Yavas B, Akin I, et al. Spark Plasma Sintered ZrC-TiC-GNP Composites: Solid Solution Formation and Mechanical Properties[J]. Ceram. Int., 2018, 44(2): 2 336–2 344

    Article  CAS  Google Scholar 

  15. Li Y, Katsui H, Goto T. Spark Plasma Sintering of TiC-ZrC Composites[J]. Ceram. Int., 2015, 41(5, Part B): 7 103–7 108

    Article  CAS  Google Scholar 

  16. Li Y, Katsui H, Goto T. Effect of Heat Treatment on the Decomposition of TiC-ZrC Solid Solutions by Spark Plasma Sintering[J]. Prep. Appl. Ultra-high Temp. Ceram. Matrix Compos., 2016, 36(15): 3 795–3 800

    CAS  Google Scholar 

  17. Dickerson M B, Wurm P J, Schorr J R, et al. Near Net-shape, Ultra-high Melting, Recession-resistant ZrC/W-based Rocket Nozzle Liners via the Displacive Compensation of Porosity (DCP) Method[J]. J. Mater. Sci., 2004, 39(19): 6 005–6 015

    Article  CAS  Google Scholar 

  18. Zhu Y, Wang S, Li W, et al. Preparation of Carbon Fiber-reinforced Zirconium Carbide Matrix Composites by Reactive Melt Infiltration at Relative Low Temperature[J]. Scr. Mater., 2012, 67(10): 822–825

    Article  CAS  Google Scholar 

  19. Wang D, Wang Y, Rao J, et al. Influence of Reactive Melt Infiltration Parameters on Microstructure and Properties of Low Temperature Derived Cf/ZrC Composites[J]. Mater. Sci. Eng., A, 2013, 568: 25–32

    Article  CAS  Google Scholar 

  20. Zhang S, Wang S, Zhu Y, et al. Fabrication of ZrB2-ZrC-based Composites by Reactive Melt Infiltration at Relative Low Temperature[J]. Scr. Mater., 2011, 65(2): 139–142

    Article  CAS  Google Scholar 

  21. Wang D, Chen H, Wang Y, et al. Precipitations of W/Cu Metallic Phases in ZrC in the Reactive Melt Infiltrated ZrC/W Composite[J]. J. Alloys Compd., 2020, 843: 155 919

    Article  CAS  Google Scholar 

  22. Wang D, Wang Y. Mechanism of Incongruent Reactions Between ZrCu Melts and Solid Tungsten Carbide[J]. Metall. Mater. Trans. B, 2020, 51(4): 1 603–1 616

    Article  CAS  Google Scholar 

  23. Najafzadehkhoee A, Habibolahzadeh A, Qods F, et al. Effect of ZrC Nanopowder Addition in WC Preforms on Microstructure and Properties of W-ZrC Composites Prepared by the Displacive Compensation of Porosity (DCP) Method[J]. J. Aust. Ceram. Soc., 2021, 57: 515–523

    Article  CAS  Google Scholar 

  24. Slater J C. Atomic Radii in Crystals[J]. J. Chem. Phys., 1964, 41(10): 3 199–3 204

    Article  CAS  Google Scholar 

  25. Wu D, Huangfu G, Wang D, et al. Microstructure and Mechanical Properties of ZrC-TaCx Composite Fabricated by Displacive Compensation of Porosity at 1 300 °C[J]. Ceram. Int., 2018, 44(1): 246–253

    Article  CAS  Google Scholar 

  26. Peng J, Lara-Curzio E, Shin D. High-throughput Thermodynamic Screening of Carbide/Refractory Metal Cermets for Ultra-high Temperature Applications[J]. Calphad, 2019, 66: 101 631

    Article  CAS  Google Scholar 

  27. Lanin A, Zubarev P, Vlasov K. Mechanical and Thermophysical Properties of Materials in HTGR Fuel Bundles[J]. At. Energy, 1993, 74(1): 40–44

    Article  Google Scholar 

  28. Heinrich H-W, Wolf M, Schmidt D. Cemented Carbide Body Containing Zirconium and Niobium and Method of Making the Same [P]. China: 7, 309, 466, 2007-12-18

  29. Rempel S V, Gusev A I. Surface Segregation of ZrC from a Carbide Solid Solution[J]. Phys. Solid State, 2002, 44(1): 68–74

    Article  CAS  Google Scholar 

  30. Gusev A I, Rempel’ S V. X-ray Diffraction Study of the Nanostructure Resulting from Decomposition of (ZrC)1−x(NbC)x Solid Solutions[J]. Inorg. Mater., 2003, 39(1): 43–47

    Article  CAS  Google Scholar 

  31. Shabalin I L. Ultra-high Temperature Materials I[M]. Berlin: Springer 2014

    Book  Google Scholar 

  32. Frage N, Froumin N, Rubinovich L, et al. Infiltrated TiC/Cu Composites[C]. 15th International Plansee Seminar, Austria, 2001

  33. Wang T, Qin S, Xiong N, et al. Study on Ablation Resistance and Thermal Shock Resistance of TiC/Cu Composite[J]. Aerosp. Mater. Technol., 2007, 37(2): 62–65

    CAS  Google Scholar 

  34. Wei B, Chen L, Wang Y, et al. Densification, Mechanical and Thermal Properties of ZrC1−x Ceramics Fabricated by Two-step Reactive Hot Pressing of ZrC and ZrH2 Powders[J]. J. Eur. Ceram. Soc., 2018, 38(2): 411–419

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Professor Dr. Hailiang Deng for the enlightened and helpful discussions.

Funding

Funded by the National Natural Science Foundation of China (Nos. 52002003 and 52002098), Natural Science Foundation of Anhui Province, China (No. 2008085QE196) and Open Fund of Key Laboratory of Green Fabrication and Surface Technology of Advanced Metal Materials (Anhui University of Technology), Ministry of Education (No. GFST2020KF09)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong Wang  (王东).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, D., Xu, K., Wei, B. et al. Microstructure and Mechanical Properties of ZrCx-NbCy-Cu Composites by Reactive Infiltration at 1 300 °C. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 38, 52–58 (2023). https://doi.org/10.1007/s11595-023-2666-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11595-023-2666-z

Key words

Navigation