Skip to main content
Log in

Nitrogen-doped TiO2/Graphene Composites Synthesized via the Vapour-thermal Method

  • Advanced Materials
  • Published:
Journal of Wuhan University of Technology-Mater. Sci. Ed. Aims and scope Submit manuscript

Abstract

TiO2/graphene composite was synthesized in the vapor environment of isopropanol. In order to improve the properties of composite, N-doped of TiO2/graphene with different N/Ti molar ratio was prepared in the vapor environment of deionized water and used urea as the source of nitrogen. The N-doped occupies in the interstitial sites of TiO2 lattice, substitutes for O element in TiO2 and for C element in graphene, and simultaneously changes the chemical states of Ti and O elements in TiO2. N-doped changes the morphology of TiO2 from nano-sheets to nanoparticles, accompanying with the decrease in specific surface area of the composites, first increases the particle size of TiO2 and then decreases, and alters the vibration modes of Ti-O-Ti. The composite with RN/Ti=2 exhibits the enhanced photocatalytic degradation performance to methylene blue, and the degradation rate increases from 7.7×10−2 min−1 for the undoped composite to 9.6×10−2 min−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rao R, Zhang X, Sun X, et al. Effects of Elemental Chemical State in NiFe2O4@TiO2 on the Photocatalytic Performance[J]. Journal of Wuhan University of Technology -Materials Science Edition, 2020, 35(2): 320–326

    Article  CAS  Google Scholar 

  2. Ferrighi L, Datteo M, Fazio G, et al. Catalysis under Cover: Enhanced Reactivity at the Interface between (Doped) Graphene and Anatase TiO2[J]. Journal of the American Chemical Society, 2016, 138(23): 7 365–7 376

    Article  CAS  Google Scholar 

  3. Li X, Bi W, Wang Z, et al. Surface-adsorbed Ions on TiO2 Nanosheets for Selective Photocatalytic CO2 Reduction[J]. Nano Research, 2018, 11(6): 3 362–3 370

    Article  CAS  Google Scholar 

  4. Wu KX, Zha WS, Chen XL. Photocatalytic Activity of TiO2 Coatings Fabricated on Al2O3 by Mechanical Coating Technique[J]. Journal of Wuhan University of Technology -Materials Science Edition, 2021, 36(1): 1–5

    Article  Google Scholar 

  5. Wang RS, Qiu GH, Xiao Y, et al. Optimal Construction of WO3 Center Dot H2O/Pd/CdS ternary Z-scheme Photocatalyst with Remarkably Enhanced Performance for Oxidative Coupling of Benzylamines[J]. Journal of Catalysis, 2019, 374: 378–390

    Article  CAS  Google Scholar 

  6. Zhang X, Liu C, Wang M, et al. Improved Photocatalytic Performance of Anatase TiO2 Synthesized through Ethanol Supercritical Drying Technique[J]. Applied Organometallic Chemistry, 2019, 33(11): e5230

    Article  CAS  Google Scholar 

  7. Liu G, Yin LC, Wang J, et al. A red Anatase TiO2 Photocatalyst for Solar Energy Conversion[J]. Energy & Environmental Science, 2012, 5(11): 9 603–9 610

    Article  CAS  Google Scholar 

  8. Zhou KF, Zhu YH, Yang XL, et al. Preparation of Graphene-TiO2 Composites with Enhanced Photocatalytic Activity[J]. New Journal of Chemistry, 2011, 35(2): 353–359

    Article  CAS  Google Scholar 

  9. Nalid NR, Majid A, Tahir MB, et al. Carbonaceous-TiO2 Nanomaterials for Photocatalytic Degradation of Pollutants: A Review[J]. Ceramics International, 2017, 43(17): 14 552–14 571

    Article  Google Scholar 

  10. Di Valentin C, Pacchioni G, Selloni A. Theory of Carbon Doping of Titanium Dioxide[J]. Chemistry of Materials, 2005, 17(26): 6656–6665

    Article  CAS  Google Scholar 

  11. Li YB, Zhang HM, Liu PR, et al. Cross-Linked g-C3N4/rGO Nanocomposites with Tunable Band Structure and Enhanced Visible Light Photocatalytic Activity[J]. Small, 2013, 9(19): 3 336–3 344

    CAS  Google Scholar 

  12. Li X, Yu JG, Wageh S, et al. Graphene in Photocatalysis: A Review[J]. Small, 2016, 12(48): 6 640–6 696

    Article  CAS  Google Scholar 

  13. Liu SW, Yu JG, Jaroniec M. Tunable Photocatalytic Selectivity of Hollow TiO2 Microspheres Composed of Anatase Polyhedra with Exposed {001} Facets[J]. Journal of the American Chemical Society, 2010, 132(34): 11 914–11 916

    Article  CAS  Google Scholar 

  14. Liu YL, Wang SP, Xu SG, et al. Evident Improvement of Nitrogen-doped Graphene on Visible Light Photocatalytic Activity of N-TiO2/N-graphene Nanocomposites[J]. Materials Research Bulletin, 2015, 65: 27–35

    Article  CAS  Google Scholar 

  15. Putri LK, Ong WJ, Chang WS, et al. Heteroatom Doped Graphene in Photocatalysis: a Review[J]. Applied Surface Science, 2015, 358: 2–14

    Article  CAS  Google Scholar 

  16. Xu MS, Liang T, Shi MM, et al. Graphene-like Two-dimensional Materials[J]. Chemical Reviews, 2013, 113(5): 3 766–3 798

    Article  CAS  Google Scholar 

  17. Yin X, Zhang HL, Xu P, et al. Simultaneous N-doping of Reduced Graphene Oxide and TiO2 in the Composite for Visible Light Photodegradation of Methylene Blue with Enhanced Performance[J]. RSC Advances, 2013, 3(40): 18 474–18 481

    Article  CAS  Google Scholar 

  18. Tiido K, Alexeyeva N, Couillard M, et al. Graphene-TiO2 Composite Supported Pt Electrocatalyst for Oxygen Reduction Reaction[J]. Electrochimica Acta, 2013, 107: 509–517

    Article  CAS  Google Scholar 

  19. Murthy M, Tubaki S, Lokesh SV, et al. Co, N-Doped TiO2 Coated r-GO as a Photo Catalyst for Enhanced Photo Catalytic Activity[J]. Materials Today: Proceedings, 2017, 4(11): 11 873–11 881

    Google Scholar 

  20. Li FY, Gu Q, Niu Y, et al. Hydrogen Evolution from Aqueous-phase Photocatalytic Reforming of Ethylene Glycol over Pt/TiO2 Catalysts: Role of Pt and Product Distribution[J]. Applied Surface Science, 2017, 391: 251–258

    Article  CAS  Google Scholar 

  21. Tang ZR, Zhang YH, Zhang N, et al. New Insight into the Enhanced Visible Light Photocatalytic Activity over Boron-doped Reduced Graphene Oxide[J]. Nanoscale, 2015, 7(16): 7 030–7 034

    Article  CAS  Google Scholar 

  22. Wang J, Tafen DN, Lewis JP, et al. Origin of Photocatalytic Activity of Nitrogen-doped TiO2 Nanobelts[J]. Journal of the American Chemical Society, 2009, 131(34): 12 290–12 297

    Article  CAS  Google Scholar 

  23. Xu Y, Mo YP, Tian J, et al. The synergistic Effect of Graphitic N and Pyrrolic N for the Enhanced Photocatalytic Performance of Nitrogen-doped Graphene/TiO2 Nanocomposites[J]. Applied Catalysis B: Environmental, 2016, 181: 810–817

    Article  CAS  Google Scholar 

  24. Khalid NR, Ahmed E, Hong ZL, et al. Nitrogen Doped TiO2 Nanoparticles Decorated on Graphene Sheets for Photocatalysis Applications[J]. Current Applied Physics, 2012, 12(6): 1 485–1 492

    Article  Google Scholar 

  25. Ananpattarachai J, Kajitvichyanukul P, Seraphin S. Visible Light Absorption Ability and Photocatalytic Oxidation Activity of Various Interstitial N-doped TiO2 Prepared from Different Nitrogen Dopants[J]. Journal of Hazardous Materials, 2009, 168(1): 253–261

    Article  CAS  Google Scholar 

  26. Sato S. Photocatalytic Activity of NOx-doped TiO2 in the Visible Light Region[J]. Chemical Physics Letters, 1986, 123(1–2): 126–128

    Article  CAS  Google Scholar 

  27. Asahi R, Morikawa T, Ohwaki T, et al. Visible-light Photocatalysis in Nitrogen-doped Titanium Oxides[J]. Science, 2001, 293(5528): 269–271

    Article  CAS  Google Scholar 

  28. Livraghi S, Votta A, Paganini MC, et al. The Nature of Paramagnetic Species in Nitrogen Doped TiO2 Active in Visible Light Photocatalysis[J]. Chemical Communications, 2005 (4): 498–500

  29. Lan K, Liu Y, Zhang W, et al. Uniform Ordered Two-dimensional Mesoporous TiO2 Nanosheets from Hydrothermal-induced Solvent-confined Monomicelle Assembly[J]. Journal of the American Chemical Society, 2018, 140(11): 4 135–4 143

    Article  CAS  Google Scholar 

  30. Li S, Pan X, Wallis LK, et al. Comparison of TiO2 Nanoparticle and Graphene-TiO2 Nanoparticle Composite Phototoxicity to Daphnia Magna and Oryzias Latipes[J]. Chemosphere, 2014, 112: 62–69

    Article  CAS  Google Scholar 

  31. Jiang GD, Lin ZF, Chen C, et al. TiO2 Nanoparticles Assembled on Graphene Oxide Nanosheets with High Photocatalytic Activity for Removal of Pollutants[J]. Carbon, 2011, 49(8): 2 693–2 701

    Article  CAS  Google Scholar 

  32. Kumar B, Lee KY, Park HK, et al. Controlled Growth of Semiconducting Nanowire, Nanowall, and Hybrid Nanostructures on Graphene for Piezoelectric Nanogenerators[J]. ACS Nano, 2011, 5(5): 4 197–4 204

    Article  CAS  Google Scholar 

  33. Shah MSAS, Park AR, Zhang K, et al. Green Synthesis of Biphasic TiO2-reduced Graphene Oxide Nanocomposites with Highly Enhanced Photocatalytic Activity[J]. ACS Applied Materials & Interfaces, 2012, 4(8): 3 893–3 901

    Article  Google Scholar 

  34. Pan L, Liu YT, Xie XM, et al. Multi-dimensionally Ordered, Multi-functionally Integrated r-GO@TiO2(B)@Mn3O4 Yolk-membrane-shell Superstructures for Ultrafast Lithium Storage[J]. Nano Research, 2016, 9(7): 2 057–2 069

    Article  CAS  Google Scholar 

  35. Cao SY, Liu TG, Tsang YH, et al. Role of Hydroxylation Modification on the Structure and Property of Reduced Graphene Oxide/TiO2 Hybrids[J]. Applied Surface Science, 2016, 382: 225–238

    Article  CAS  Google Scholar 

  36. Li H, Shang J, Zhu H, et al. Oxygen Vacancy Structure Associated Photocatalytic Water Oxidation of BiOCl[J]. ACS Catalysis, 2016, 6(12): 8 276–8 285

    Article  CAS  Google Scholar 

  37. Ramadoss A, Kim SJ. Improved Activity of a Graphene-TiO2 Hybrid Electrode in an Electrochemical Supercapacitor[J]. Carbon, 2013, 63: 434–445

    Article  CAS  Google Scholar 

  38. Mills A, Elliott N, Parkin IP, et al. Novel TiO2 CVD Films for Semiconductor Photocatalysis[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2002, 151(1–3): 171–179

    Article  CAS  Google Scholar 

  39. Alam U, Fleisch M, Kretschmer I, et al. One-step Hydrothermal Synthesis of Bi-TiO2 Nanotube/graphene Composites: an Efficient Photocatalyst for Spectacular Degradation of Organic Pollutants under Visible Light Irradiation[J]. Applied Catalysis B: Environmental, 2017, 218: 758–769

    Article  CAS  Google Scholar 

  40. Perera SD, Mariano RG, Vu K, et al. Hydrothermal Synthesis of Graphene-TiO2 Nanotube Composites with Enhanced Photocatalytic Activity[J]. ACS Catalysis, 2012, 2(6): 949–956

    Article  CAS  Google Scholar 

  41. Mousa MA, Khairy M, Mohamed HM. Dye-Sensitized Solar Cells Based on an N-Doped TiO2 and TiO2-Graphene Composite Electrode[J]. Journal of Electronic Materials, 2018, 47(10): 6 241–6 250

    Article  CAS  Google Scholar 

  42. Sheydaei M, Shiadeh HRK, Ayoubi-Feiz B, et al. Preparation of Nano N-TiO2/graphene Oxide/titan Grid Sheets for Visible Light Assisted Photocatalytic Ozonation of Cefixime[J]. Chemical Engineering Journal, 2018, 353: 138–146

    Article  CAS  Google Scholar 

  43. Pei FY, Xu SG, Zuo W, et al. Effective Improvement of Photocatalytic Hydrogen Evolution via a Facile in-situ Solvothermal N-doping Strategy in N-TiO2/N-graphene Nanocomposite[J]. International Journal of Hydrogen Energy, 2014, 39(13): 6 845–6 852

    Article  CAS  Google Scholar 

  44. Wang GQ, Xing W, Zhuo SP. Nitrogen-doped Graphene as Low-cost Counter Electrode for High-efficiency Dye-sensitized Solar Cells[J]. Electrochimica Acta, 2013, 92: 269–275

    Article  CAS  Google Scholar 

  45. Zhao DL, Sheng GD, Chen CL, et al. Enhanced Photocatalytic Degradation of Methylene Blue under Visible Irradiation on Graphene@TiO2 Dyade Structure[J]. Applied Catalysis B: Environmental, 2012, 111: 303–308

    Article  Google Scholar 

  46. Wang R, Wu QD, Lu Y, et al. Preparation of Nitrogen-doped TiO2/graphene Nanohybrids and Application as Counter Electrode for Dye-sensitized Solar Cells[J]. ACS Applied Materials & Interfaces, 2014, 6(3): 2 118–2 124

    Article  CAS  Google Scholar 

  47. Pedrosa M, Pastrana-Martínez LM, Pereira MFR, et al. N/S-doped Graphene Derivatives and TiO2 for Catalytic Ozonation and Photocatalysis of Water Pollutants[J]. Chemical Engineering Journal, 2018, 348: 888–897

    Article  CAS  Google Scholar 

  48. Cheng XW, Yu XJ, Xing ZP. Characterization and Mechanism Analysis of N Doped TiO2 with Visible Light Response and Its Enhanced Visible Activity[J]. Applied Surface Science, 2012, 258(7): 3 244–3 248

    Article  CAS  Google Scholar 

  49. Zhang Y, Yang QG, Yang XY, et al. One-step Synthesis of in-situ N-doped Ordered Mesoporous Titania for Enhanced Gas Sensing Performance[J]. Microporous and Mesoporous Materials, 2018, 270: 75–81

    Article  CAS  Google Scholar 

  50. Liu C, Zhu X, Wang P, et al. Defects and Interface States Related Photocatalytic Properties in Reduced and Subsequently Nitridized Fe3O4/TiO2[J]. Journal of Materials Science & Technology, 2018, 34(6): 931–941

    Article  CAS  Google Scholar 

  51. Chen Z, Ma YQ, Geng BQ, et al. Photocatalytic Performance and Magnetic Separation of TiO2-functionalized γ-Fe2O3, Fe, and Fe/Fe2O3 Magnetic Particles[J]. Journal of Alloys and Compounds, 2017, 700: 113–121

    Article  CAS  Google Scholar 

  52. Yuan J, Chen MX, Shi JW, et al. Preparations and Photocatalytic Hydrogen Evolution of N-doped TiO2 from Urea and Titanium Tetrachloride[J]. International Journal of Hydrogen Energy, 2006, 31(10): 1 326–1 331

    Article  CAS  Google Scholar 

  53. Wang M, Ma YQ, Sun X, et al. Building of CoFe2/CoFe2O4/MgO Architectures: Structure, Magnetism and Surface Functionalized by TiO2[J]. Applied Surface Science, 2017, 392: 1 078–1 087

    Article  CAS  Google Scholar 

Download references

Funding

Funded by the Natural Science Research Project of Anhui Educational Committee (KJ2021A0062), the National Natural Science Foundation of China (No. 51471001), and the Open Fund for Discipline Construction, Institute of Physical Science and Information Technology. A Portion of This Work was Performed on the Steady High Magnetic Field Facilities, High Magnetic Field Laboratory, CAS

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Wang  (王敏).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, H., Wang, M., Ju, T. et al. Nitrogen-doped TiO2/Graphene Composites Synthesized via the Vapour-thermal Method. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 37, 1105–1113 (2022). https://doi.org/10.1007/s11595-022-2640-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11595-022-2640-x

Key words

Navigation