Skip to main content
Log in

Recalescence Velocity and Microstructure Evolution of Deeplyundercooled Cu65Ni35 Alloy

  • Metallic Materials
  • Published:
Journal of Wuhan University of Technology-Mater. Sci. Ed. Aims and scope Submit manuscript

Abstract

The Cu65Ni35 alloy liquid was undercooled by the fluxing method, and the rapid solidification structure was obtained by natural cooling. The solidification interface migration information of Cu65Ni35 alloy liquid in rapid solidification stage was photographed with the help of high-speed camera, and the recalescence velocity was calculated. The microstructure evolution of the alloy was systematically studied by observing the microstructure morphology and taking photos on the metallographic microscope. By analyzing the evolution of dendrite grain size and microstructure microhardness with undercoolingand relying on electron backscatter diffraction (EBSD) technology, the grain refinement mechanism of microstructure under high undercooling and low undercooling is finally confirmed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liu F, Yang GC. Rapid Solidification of Highly Undercooled Bulk Liquid Superalloy: Recent Developments, Future Directions[J]. International Materials Reviews, 2013, 51(3): 145–170

    Article  Google Scholar 

  2. Wei B, Yang C, Zhou Y. High Undercooling and Rapid Solidification of Ni-32.5%Sn Eutectic Alloy[J]. Acta Metallurgica et Materialia, 1991, 39(6): 1249–1258

    Article  CAS  Google Scholar 

  3. Ma K, Zhao Y, Xu X, et al. The Effect of Undercooling on Growth Velocity and Microstructure of Ni95Cu5 Alloys[J]. Journal of Crystal Growth, 2019, 513: 30–37

    Article  CAS  Google Scholar 

  4. Zheng C, Yanan Y, Qiang C, et al. Recalescence Effect Simulation Andmicrostructure Evolution Ofundercooled Fe82B17Si1 Alloy[J]. Acta Metallurgica Sinica, 2014, 50(7): 795–801

    Google Scholar 

  5. Xi Z, Yang G, Zhou Y. Growth Morphology of Ni3Si in High Undercooled Ni-Si Eutectic Alloy[J]. Progressin Natural Science, 1997, 5: 114–121

    Google Scholar 

  6. Li D, Yang G, Zhou Y. Recalescence and Solidification Microstructure of Highly Undercooled Alloy Ni68B21Si11[J]. Acta Metallurgica Sinica, 1992, 28(10): 1–5

    Google Scholar 

  7. Xu XL, Chen YZ, Liu F. Evolution of Solidification Microstructure in Undercooled Co80Pd20 Alloys[J]. Materials Science and Technology, 2013, 28(12): 1492–1498

    Article  Google Scholar 

  8. Dragnevski KI, Mullis AM, Cochrane RF. The Effect of Experimental Variables on the Levels of Melt Undercooling[J]. Materials Science and Engineering: A, 2004, 375–377: 485–487

    Article  Google Scholar 

  9. Greer AL. Nucleation and Solidification Studies Using Drop-tubes[J]. Materials Science and Engineering A, 1994, 178(1–2): 113–120

    Article  CAS  Google Scholar 

  10. Wang Z. Magnetic Levitation Melting Method[J]. Foreign Science and Technology, 1991, (7): 2

  11. Perepezko JH. Nucleation Reactions in Undercooled Liquids[J]. Materials Science and Engineering A, 1984, 178(1): 105–111.

    Google Scholar 

  12. Lu SY, Li JF, Zhou YH. Grain Refinement in the Solidification of Undercooled Ni-Pd Alloys[J]. Journal of Crystal Growth, 2007, 309(1): 103–111

    Article  CAS  Google Scholar 

  13. Dragnevski KI, Cochrane RF, Mullis AM. The Mechanism for Spontaneous Grain Refinement in Undercooled Pure Cu Melts[J]. Materials Science and Engineering A, 2004, 375: 479–484

    Article  Google Scholar 

  14. Xu X, Hou H, Zhao Y, et al. Nonequilibrium Solidification, Grain Refinements, and Recrystallization of Deeply Undercooled Ni-20 At. Pct Cu Alloys: Effects of Remelting and Stress[J]. Metallurgical and Materials Transactions A, 2017, 48(10): 4777–4785

    Article  CAS  Google Scholar 

  15. Wang H, Liu F, Yang G. Experimental Study of Grain Refinement Mechanism in Undercooled N-15at%Cu Alloy[J]. Journal of Materials Research, 2011, 25(10): 1963–1974

    Article  Google Scholar 

  16. Xu XL, Zhao YH, Hou H. Observation of Dendrite Growth Velocity and Microstructure Transition in Highly Undercooled Single Phase Alloys[J]. Materials Characterization, 2019, 155

  17. Grgač P, Mesárošová J, Behúlová M, et al. Experimental Determination of the Nuclei Number in the Deeply Undercooled and Rapidly Solidified Powder Particles of High-alloyed Steel[J]. Journal of Alloys and Compounds, 2019, 798: 204–209

    Article  Google Scholar 

  18. Xu X, Chen Y, Liu F. Evidence of Recrystallization Mechanism of Grain Refinement in Hypercooled Co80Pd20 Alloys[J]. Materials Letters, 2012, 81: 73–75

    Article  CAS  Google Scholar 

  19. Willnecker R, Herlach D M, Feuerbacher B. Grain Refinement Induced by a Critical Crystal Growth Velocity in Undercooled Melts[J]. Applied Physics Letters, 1990, 56(4): 324–326

    Article  CAS  Google Scholar 

  20. Grain Refinement and the Stability of Dendrites Growing into Undercooled Pure Metals and Alloys[J]. Journal of Applied Physics, 1997, 82(8): 3783–3790

  21. Powell L. The Undercooling of Silver[J]. J. Aust. Inst. Met., 1965, 10: 3223

    Google Scholar 

  22. Leung KK, Chiu CP, Kui HW. Grain Refinement in Undercooled Nickel[J]. Scripta Metallurgica et Materialia, 1995, 32(10): 1559–1563

    Article  CAS  Google Scholar 

  23. Karma A. Model of Grain Refinement in Solidification of Undercooled Melts[J]. International Journal of Non-Equiulibrium Processing, 1998, 11(2): 201–223

    CAS  Google Scholar 

  24. Li J, Liu Y, Lu Y, et al. Structural Evolution of Undercooled Ni-Cu Alloys[J]. Journal of Crystal Growth, 1998, 192: 462–470

    Article  CAS  Google Scholar 

  25. Horvay G. The Tension Field Created by a Spherical Nucleus Freezing into Its Less Dense Undercooled Melt[J]. International Journal of Heat and Mass Transfer, 1965, 8(2): 195–243

    Article  Google Scholar 

  26. Boettinger WJ, Coriell SR, Trivedi R. Rapid Solidification Processing: Principles and Technologies IV[M]. Baton Rouge: Claitor’s Pulishing Division, 1988

    Google Scholar 

  27. Liu F, Yang G. Stress-induced Recrystallization Mechanism for Grain Refinement in Highly Undercooled Superalloy[J]. Journal of Crystal Growth, 2001, 231: 295–305

    Article  CAS  Google Scholar 

Download references

Funding

Funded by the National Natural Science Foundation of China (No.51701187), and the Basic Applied Research Projects in Shanxi Province (201801D221151)

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ruiqin Li  (李瑞琴) or Yuhong Zhao  (赵宇宏).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, H., Cheng, T., Li, R. et al. Recalescence Velocity and Microstructure Evolution of Deeplyundercooled Cu65Ni35 Alloy. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 37, 277–284 (2022). https://doi.org/10.1007/s11595-022-2528-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11595-022-2528-9

Key words

Navigation