Skip to main content
Log in

Effect of Outer Carbon Layer Thickness of Carbon-covered N-doped Hollow Carbon Nanospheres on Its Electrocatalytic Performance

  • Advanced Materials
  • Published:
Journal of Wuhan University of Technology-Mater. Sci. Ed. Aims and scope Submit manuscript

Abstract

Hollow nitrogen-doped porous carbon materials covered with different thicknesses of carbon layers were synthesized to assist evaluation of the influence of nitrogen atom on the surrounding carbon atoms. The designed carbon-based materials were synthesized through pyrolysis of surface-attached block copolymer layers on silica nanoparticles with different thicknesses of the second block of grafted polymer chains, followed by removal of silica templates. The experimental results reveal that coverage a carbon layer with proper thickness can improve the oxygen reaction reduction activity of nitrogen-doped carbon materials as evidenced by the positive shift of half-wave potential in linear scanning voltammetry response curves. The conclusions may provide a reference work on understanding the active sites and designing materials with superior electrochemical performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Debe MK. Electrocatalyst Approaches and Challenges for Automotive Fuel Cells[J]. Nature, 2012, 486(7401): 43–51

    Article  CAS  Google Scholar 

  2. Wagner FT, Lakshmanan B, Mathias MF. Electrochemistry and the Future of the Automobile[J]. J. Phys. Chem. Lett., 2010, 1(14): 2 204–2 219

    Article  CAS  Google Scholar 

  3. Wu G, More KL, Johnston CM, et al. High-performance Electrocatalysts for Oxygen Reduction Derived from Polyaniline, Iron, and Cobalt [J]. Science, 2011, 332(6028): 443–447

    Article  CAS  Google Scholar 

  4. Wan K, Tan A, Yu Z, Liang Z, et al. 2D nitrogen-doped Hierarchically Porous Carbon: Key Role of Low Dimensional Structure in Favoring Electrocatalysis and Mass Transfer for Oxygen Reduction Reaction[J]. Appl. Catal. B: Environ., 2017, 209: 447–454

    Article  CAS  Google Scholar 

  5. Shen L, Du L, Tan S, et al. Flexible Electrochromic Supercapacitor Hybrid Electrodes based on Tungsten Oxide Films and Silver Nanowires [J]. Chem. Commun., 2016, 52(37): 6 296–6 299

    Article  CAS  Google Scholar 

  6. Xu J, Jeon I, Seo J, et al. Edge-selectively Halogenated Graphene Nanoplatelets (XGnPs, X = Cl, Br, or I) Prepared by Ball-milling and Used as Anode Materials for Lithium-ion Batteries[J]. Adv. Mater., 2014, 26(43): 7 317–7 323

    Article  CAS  Google Scholar 

  7. Li R, Wei Z, Gou X. Nitrogen and Phosphorus Dual-doped Graphene/Carbon Nanosheets as Bifunctional Electrocatalysts for Oxygen Reduction and Evolution[J]. ACS Catal., 2015, 5(7): 4 133–4 142

    Article  CAS  Google Scholar 

  8. Xing R, Zhou T, Zhou Y, et al. Creation of Triple Hierarchical Micro-meso-macroporous N-doped Carbon Shells with Hollow Cores Toward the Electrocatalytic Oxygen Reduction Reaction[J]. Nano-Micro Lett., 2018, 10(1): 20

    Article  Google Scholar 

  9. Kim J, Lee Y, Sun S. Structurally Ordered FePt Nanoparticles and Their Enhanced Catalysis for Oxygen Reduction Reaction[J]. J. Am. Chem. Soc., 2010, 132(14): 4 996–4 997

    Article  CAS  Google Scholar 

  10. Han C, Wang J, Gong Y, et al. Nitrogen-doped Hollow Carbon Hemispheres as Efficient Metal-free Electrocatalysts for Oxygen Reduction Reaction in Alkaline Medium[J]. J. Mater. Chem. A, 2013, 2(3): 605–609

    Article  Google Scholar 

  11. Wu G, Nelson M, Ma S, et al. Synthesis of Nitrogen-doped Onion-like Carbon and Its Use in Carbon-based CoFe Binary Non-precious-metal Catalysts for Oxygen-reduction[J]. Carbon, 2011, 49(12): 3 972–3 982

    Article  CAS  Google Scholar 

  12. Li Q, Pan H, Higgins D, et al. Metal-organic Framework-derived Bamboo-like Nitrogen-doped Graphene Tubes as an Active Matrix for Hybrid Oxygen-Reduction Eectrocatalysts[J]. Small, 2015, 11(12): 1 443–1 452

    Article  CAS  Google Scholar 

  13. Zheng Y, Jiao Y, Chen J, et al. Nanoporous Graphitic-C3N4@carbon Metal-free Electrocatalysts for Highly Efficient Oxygen Reduction[J]. J. Am. Chem. Soc., 2011, 133(50): 20 116–20 119

    Article  CAS  Google Scholar 

  14. Zhong Y, Xia X, Shi F, et al. Transition Metal Carbides and Nitrides in Energy Storage and Conversion[J]. Adv. Sci., 2016, 3(5): 1 500 286

    Article  Google Scholar 

  15. Chen X, Liang Y, Wan L, et al. Construction of Porous N-doped Graphene Layer for Efficient Oxygen Reduction Reaction[J]. Chem. Eng. Sci., 2019, 194: 36–44

    Article  CAS  Google Scholar 

  16. Gu D, Zhou Y, Ma R, et al. Facile Synthesis of N-doped Graphene-like Carbon Nanoflakes as Efficient and Stable Electrocatalysts for the Oxygen Reduction Reaction[J]. Nano-micro Letters, 2018, 10(2): 29

    Article  Google Scholar 

  17. Wan K, Yu Z, Li X, et al. pH Effect on Electrochemistry of Nitrogen-doped Carbon Catalyst for Oxygen Reduction Reaction[J]. ACS Catal., 2015, 5(7): 4 325–4 332

    Article  CAS  Google Scholar 

  18. Cheon JY, Kim JH, Kim JH, et al. Intrinsic Relationship between Enhanced Oxygen Reduction Reaction Activity and Nanoscale Work Function of Doped Carbons[J]. J. Am. Chem. Soc., 2014, 136(25): 8 875–8 878

    Article  CAS  Google Scholar 

  19. Lai L, Potts JR, Zhan D, et al. Exploration of the Active Center Structure of Nitrogen-doped Graphene-based Catalysts for Oxygen Reduction Reaction[J]. Energy Environ. Sci., 2012, 5(7): 7 936–7 942

    Article  CAS  Google Scholar 

  20. Hou Z, Wang X, Ikeda T, et al. Electronic Structure of N-doped Graphene with Native Point Defects[J]. Phys. Rev. B, 2013, 87(16): 165 401

    Article  Google Scholar 

  21. Pacilé D, Meyer JC, Rodríguez AF, et al. Electronic Properties and Atomic Structure of Graphene Oxide Membranes[J]. Carbon, 2011, 49(3): 966–972

    Article  Google Scholar 

  22. Pan X, Boakye OF, Liu K, et al. Nitrogen-doped Porous Carbon Derived from Surface-attached Polymer Layers for Oxygen Reduction Reaction under Acidic Conditions[J]. J. WUT-Mater. Sci. Ed., 2017, (12): 1 287–1 292

  23. Yang HB, Miao J, Hung SF, et al. Identification of Catalytic Sites for Oxygen Reduction and Oxygen Evolution in N-doped Graphene Materials: Development of Highly Efficient Metal-free Bifunctional Electrocatalyst[J]. Sci. Adv., 2016, 2(4): e1501122

    Article  Google Scholar 

  24. Guo D, Shibuya R, Akiba C, et al. Active Sites of Nitrogen-doped Carbon Materials for Oxygen Reduction Reaction Clarified using Model Catalysts[J]. Science, 2016, 351(6271): 361–365

    Article  CAS  Google Scholar 

  25. Fan M, Pan X, Lin W, et al. Carbon-covered Hollow Nitrogen-doped Carbon Nanoparticles and Nitrogen-doped-carbon-covered Hollow Carbon Nanoparticles for Oxygen Reduction[J]. ACS Appl. Nano Mater., 2020, https://doi.org/10.1021/acsanm.0c00222

  26. Fan M, Cheng Y, Tu W, et al. Fabrication of Nitrogen-doped Hollow Carbon Nanospheres with Variable Nitrogen Contents using Mixed Polymer Brushes as Precursors[J]. J. Mater. Sci., 2019, 54(11): 8 121–8 132

    Article  CAS  Google Scholar 

  27. Saha S, Baker GL. Substituent Effects in Surface-initiated ATRP of Substituted Styrenes[J]. Appl. Surf. Sci., 2015, 359: 911–916

    Article  CAS  Google Scholar 

  28. Keskin D, Clodt JI, Hahn J, et al. Postmodification of PS-b-P4VP Di-block Copolymer Membranes by ARGET ATRP[J]. Langmuir, 2014, 30(29): 8 907–8 914

    Article  CAS  Google Scholar 

  29. Meléndez-Ortiz HI, Bucio E. Radiation Synthesis of a Thermo-pH Responsive Binary Graft Copolymer (PP-g-DMAEMA)-g-NIPAAm by a Two Step Method[J]. Polym. Bull., 2008, 61(5): 619–629

    Article  Google Scholar 

  30. Huang QR, Volksen W, Huang E, et al. Structure and Interaction of Organic/inorganic Hybrid Nanocomposites for Microelectronic Applications. 1. MSSQ/P (MMA-co-DMAEMA) Nanocomposites[J]. Chem. Mater., 2002, 14(9): 3 676–3 685

    Article  CAS  Google Scholar 

  31. Wang W, Ding W, Yu J, et al. Synthesis and Characterization of a Novel POSS/PS Composite via ATRP of Branched Functionalized POSS[J]. J. Polym. Res., 2012, 19(9): 9 948

    Article  Google Scholar 

  32. Qu K, Zheng Y, Dai S, et al. Graphene Oxide-polydopamine Derived N, S-codoped Carbon Nanosheets as Superior Bifunctional Electrocat-alysts for Oxygen Reduction and Evolution[J]. Nano Energy, 2016, 19: 373–381

    Article  CAS  Google Scholar 

  33. Chen L, Huang Z, Liang H, et al. Three-dimensional Heteroatom-doped Carbon Nanofiber Networks Derived from Bacterial Cellulose for Supercapacitors[J]. Adv. Funct. Mater., 2014, 24(32): 5 104–5 111

    Article  CAS  Google Scholar 

  34. Ishizaki T, Chiba S, Kaneko Y, et al. Electrocatalytic Activity for the Oxygen Reduction Reaction of Oxygen-containing Nanocarbon Synthesized by Solution Plasma[J]. J. Mater. Chem. A, 2014, 2(27): 10 589–10 598

    Article  CAS  Google Scholar 

  35. He D, Zhao W, Li P, et al. Bifunctional Biomass-derived 3D Nitrogen-doped Porous Carbon for Oxygen Reduction Reaction and Solid-state Supercapacitor[J]. Appl. Surf. Sci., 2019, 465: 303–312

    Article  CAS  Google Scholar 

  36. Young C, Salunkhe RR, Tang J, et al. Zeolitic Imidazolate Framework (ZIF-8) Derived Nanoporous Carbon: The Effect of Carbonization Temperature on the Supercapacitor Performance in an Aqueous Electrolyte [J]. Phys. Chem. Chem. Phys., 2016, 18(42): 29 308–29 315

    Article  CAS  Google Scholar 

  37. Hellgren N, Haasch RT, Schmidt S, et al. Interpretation of X-ray Photoelectron Spectra of Carbon-nitride Thin Films: New Insights from in Situ XPS[J]. Carbon, 2016, 108: 242–252

    Article  CAS  Google Scholar 

  38. Zhu A, Qiao L, Tan P, et al. Boosted Electrocatalytic Activity of Nitrogen-doped Porous Carbon Triggered by Oxygen Functional Groups[J]. J. Coll. Interf. Sci., 2019, 541: 133–142

    Article  CAS  Google Scholar 

  39. Wei J, Zhou D, Sun Z, et al. A Controllable Synthesis of Rich Nitrogen-doped Ordered Mesoporous Carbon for CO2 Capture and Supercapacitors[J]. Adv. Funct. Mater., 2013, 23(18): 2 322–2 328

    Article  CAS  Google Scholar 

  40. Li X, Zhang F, Yuan J, et al. Polyelectrolyte-brush-derived Nitrogen-doped Porous Carbon[J]. ChemNanoMat, 2016, 2(6): 1 028–1 032

    Article  CAS  Google Scholar 

  41. Zhang L, Xia Z. Mechanisms of Oxygen Reduction Reaction on Nitrogen-doped Graphene for Fuel Cells[J]. J. Phys. Chem. C, 2011, 115(22): 11 170–11 176

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haining Zhang  (张海宁).

Additional information

Funded by the Guangdong Key R&D Program(2020B0909040001) and the Opening Project of State Key Laboratory of Advanced Technology for Float Glass (2018KF03)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tao, B., Pan, X. & Zhang, H. Effect of Outer Carbon Layer Thickness of Carbon-covered N-doped Hollow Carbon Nanospheres on Its Electrocatalytic Performance. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 36, 166–173 (2021). https://doi.org/10.1007/s11595-021-2390-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11595-021-2390-1

Key words

Navigation