Skip to main content

Advertisement

Log in

Preparation of M2O3-CeO2 (M=La, Fe, and Al) Compoundoxide Catalyst and Its Degradation Performance

  • Advanced Materials
  • Published:
Journal of Wuhan University of Technology-Mater. Sci. Ed. Aims and scope Submit manuscript

Abstract

As one of the most active rare earths, CeO2 has caused extensive concern due to its multifunctional properties. CeO2-based compound oxide of M2O3-CeO2 (M=La, Fe, and Al) were prepared by coprecipitation and impregnation methods. The photocatalytic performance of the samples for the degradation methylene blue was studied under UV and visible light irradiation. The effects of constituents on the properties of the CeO2-based catalysts were investigated by XRD, TEM, BET, and UV-Vis spectrophotometer. The highest degradation of methylene blue under 230W UV light was almost 100% at 50 min by La2O3/Fe2O3-CeO2/γ-Al2O3 catalyst and 99.42% at 50 min by Fe2O3-CeO2/γ-Al2O3 catalyst. The methylene blue removal efficiency under indoor natural light reaches 93.81% by La2O3/Fe2O3-CeO2/γ-Al2O3 catalyst and 92.34% by Fe2O3-CeO2/γ-Al2O3 catalyst at 50 min. The order of catalytic degradation activity is La2O3/Fe2O3-CeO2/γ-Al2O3>Fe2O3-CeO2/γ-Al2O3> La2O3-CeO2/γ-Al2O3>Al2O3, owing to their structural features. The doping of La3+ or Fe3+ onto CeO2/γ-Al2O produced much more oxygen vacancies under light irradiation and reduced the energy laps of CeO2 with value of 2.86 ev, which improved the photocatalytic redox performance of the composite oxide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Machida M, Kawada T, Fujii H, et al. The Role of CeO2 as a Gateway for Oxygen Storage Over CeO2-Grafted Fe2O3 Composite Materials[J]. J. Phy. Chem.C, 2015, 119(44): 24 932–24 941

    Article  CAS  Google Scholar 

  2. Galindo F, Gómez R, Aguilar M. Photodegradation of the Herbicide, 4-Dichlorophenoxyacetic Acid on Nanocrystalline TiO2-CeO2 Sol-Gel Catalysts[J]. J. Mol. Catal. A-Chem., 2008, 281(1–2): 119–125

    Article  CAS  Google Scholar 

  3. Baldrian P, Merhautová V, Cajthaml T, et al. Synthesis of Zirconia-Immobilized Copper Chelates for Catalytic Decomposition of Hydrogen Peroxide and the Oxidation of Polycyclic Aromatic Hydrocarbons[J]. Chemosphere, 2008, 72(11): 1 721–1 726

    Article  CAS  Google Scholar 

  4. Grirrane A, Corma A, Garcia H. Gold Nanoparticles Supported on Ceria Promotes the Selective Oxidation of Oximes Into the Corresponding Carbonylic Compounds[J]. J. Catal., 2009, 268(2): 350–355

    Article  CAS  Google Scholar 

  5. Veerakumar P, Lu ZZ, Velayudham M, et al. Alumina Supported Nanoruthenium as Efficient Heterogeneous Catalyst for the Selective H2O2 Oxidation of Aliphatic and Aromatic Sulfides to Sulfoxides[J]. J Mol. Catal. A-Chem., 2010, 332(1–2): 128–137

    Article  CAS  Google Scholar 

  6. Galindo F, Gómez R, Aguilar M. Photodegradation of the Herbicide 2, 4-Dichlorophenoxyacetic Acid on Nanocrystalline TiO2-CeO2 Sol-Gel Catalysts[J]. J Mol. Catal. A-Chem., 2008, 281(1–2): 119–125

    Article  CAS  Google Scholar 

  7. Nai T, Liu J Y, Shen W J. Tuning the shape ceria nanomaterials for catalytic applications[J]. Chinese J. Catal., 2013, 34(5): 838–850

    Article  CAS  Google Scholar 

  8. Hernandez WY, Centeno MA, Sarria FR, et al. Synthesis and Characterization of Ce1−xEuxO2−x/2 Mixed Oxides and Their Catalytic Activities for CO Oxidation[J]. J. Phy. Chem. C, 2009, 113(14): 5 629–5 635

    Article  CAS  Google Scholar 

  9. Saravanakumar K, MymoonRamjan M, Suresh P, et al. Fabrication of Highly Efficient Visible Light Driven Ag/CeO2 Photocatalyst for Degradation of Organic Pollutants[J]. J. Alloy. Compd., 2016, 664:149–160

    Article  CAS  Google Scholar 

  10. Jia L, Shen M, Hao J, et al. Dynamic Oxygen Storage and Release Over Mn0.1Ce0.9Ox and Mn0.1Ce0.6Zr0.3Ox Complex Compounds and Structural Characterization[J]. J. Alloy. Compd., 2008, 454 (1–2): 321–326

    Article  CAS  Google Scholar 

  11. Latha P, Prakash K, Karuthapandian S. Enhanced Visible Light Photocatalytic Activity of CeO2/Alumina Nanocomposite: Synthesized Via Facile Mixing-Calcination Method for Dye Degradation[J]. Adv. Powder Technol., 2017, 28(11): 2 903–2 913

    Article  CAS  Google Scholar 

  12. Denisov NM, Chubenko EB, Bondarenko VP, et al. Black ZnO/C Nanocomposite Photocatalytic Films Formed by One Step Sol-Gel Technique[J]. J. Sol-Gel Sci. Techn., 2018, 85(2): 413–420

    Article  CAS  Google Scholar 

  13. Neves TM, Frantz TS, Schenque ECC, et al. An Investigation Into an Alternative Photocatalyst Based on CeO2/Al2O3 in Dye Degradation[J]. Environ. Techn. Innov., 2017, 8, 349–359

    Article  Google Scholar 

  14. Spasiano D, Marotta R, Malato S, et al. Solar Photocatalysis: Materials, Reactors, Some Commercial, and Pre-Industrialized Applications: A Comprehensive Approach[J]. Appl. Catal. B-Environ., 2015, 170–171: 90–123

    Article  CAS  Google Scholar 

  15. Hsieh CT, Fan WS, Chen WY, et al. Adsorption and Visible-Light-Derived Photocatalytic Kinetics of Organic Dye on Co Doped Titania Nanotubes Prepared by Hydrothermal Synthesis[J]. Sep. Purif. Technol., 2009, 67(3): 312–318

    Article  CAS  Google Scholar 

  16. Karunakaran C, Vijayabalan A, Manikandan G, et al. Visible Light Photocatalytic Disinfection of Bacteria by Cd-TiO2[J]. Cataly. Comm., 2011, 12(9): 826–829

    Article  CAS  Google Scholar 

  17. Li KZ, Wang H, Wei YG, et al. Partial Oxidation of Methane to Syngas With Air by Lattice Oxygen Transfer Over ZrO2-Modified Ce-Fe Mixed Oxides[J]. Chem. Eng. J., 2011, 173(2): 574–582

    Article  CAS  Google Scholar 

  18. Song S, Xu L J, He Z Q, et al. Mechanism of the Photocatalytic Degradation of C.I. Reactive Black 5 at pH 12.0 Using SrTiO3/CeO2 as the Catalyst[J]. Environ. Sci.Tech., 2007, 41(16): 5 846–5 853

    Article  CAS  Google Scholar 

  19. Divya T, Renuka NK. Modulated Heterogeneous Fenton-Like Activity of ‘M’ Doped Nanoceria Systems (M = Cu, Fe, Zr, Dy, La): Influence of Reduction Potential of Doped Cations[J]. J. Mol. Catal. A-Chem., 2015, 408: 41–47

    Article  CAS  Google Scholar 

  20. Li M, Liu Z G, Hu Y H, et al. Effect of Doping Elements on Catalytic Performance of CeO2-ZrO2 Solid Solutions[J]. J. Rare Earths, 2008, 26(3): 357–361

    Article  Google Scholar 

  21. Dai W, Yu J, Xu H, et al. Synthesis of Hierarchical Flower-Like Bi2MoO6 Microspheres as Efficient Photocatalyst for Photoreduction of CO2 Into Solar Fuels Under Visible Light[J]. Cryst. Eng. Comm., 2016, 18(19): 3 472–3 480

    Article  CAS  Google Scholar 

  22. Lamdab U, Wetchakun K, Phanichphant S, et al. Highly Efficient Visible Light-Induced Photocatalytic Degradation of Methylene Blue Over InVO4/BiVO4 Composite Photocatalyst[J]. J. Mater. Sci., 2015, 50(17): 5 788–5 798

    Article  CAS  Google Scholar 

  23. Choudhury B, Chetri P, Choudhury A, et al. Band Gap Engineering of CeO2 Nanostructure Using an Electrochemically Active Biofilm for Visible Light Applications[J]. RSC Advanced, 2014, 4(32): 16 782–16 791

    Article  Google Scholar 

  24. Liu CB, Sun H, Qian JC, et al. Biotemplating Synthesis and Photocatalytic Activities of N-doped CeO2 Microcapsule Tailored by Hemerocallis Pollen[J]. Advanced Powder Techn., 2017, 28(10): 2 741–2 746

    Article  CAS  Google Scholar 

  25. Choudhury B, Chetri P, Choudhury A. Oxygen Defects and Formation of Ce3+ Affecting the Photocatalytic Performance of CeO2 Nanoparticles [J]. RSC Advanced, 2014, 4(9): 4 663–4 671

    Article  CAS  Google Scholar 

  26. Yuan CL, Li G, Wei LF, et al. Fabrication, Characterization of β-MnO2 Microrod Catalysts and Their Performance in Rapid Degradation of Dyes of High Concentration[J]. Catay. Today, 2014, 224(1): 154–162

    Google Scholar 

  27. Arslan-Alaton I, Ferry JL. Application of Polyoxotung States as Environmental Catalysts:Wet Air Oxidation of Acid Dye Orange II[J]. Dyes and Pigments, 2002, 54(1): 25–36

    Article  CAS  Google Scholar 

  28. Choi J, Park HW, Hoffmann Michael R. Effects of Single Metal-Ion Doping on the Visible-Light Photoreactivity of TiO2[J]. J. Phy. Chem. C, 2010, 114 (2): 783–792

    Article  CAS  Google Scholar 

  29. Reina TR, Ivanova S, Centeno MA, et al. Catalytic Screening of Au/CeO2-MOx/Al2O3 Catalysts (M¼ La, Ni, Cu, Fe, Cr, Y) in the CO-PrOx Reaction[J]. Int. J. Hydrogen Energ., 2015, 40(4): 1 782–1 788

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youfeng Li  (李友凤).

Additional information

Funded by the National Natural Science Foundation of China (No.41763008), the National Science Foundation of Hunan Province (No.2018JJ2112), the Qian Jiao He KY([2019]114), and the Talents of Qian Ke He Platform ([2017]5727-11)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Lin, J., Xie, B. et al. Preparation of M2O3-CeO2 (M=La, Fe, and Al) Compoundoxide Catalyst and Its Degradation Performance. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 35, 335–341 (2020). https://doi.org/10.1007/s11595-020-2261-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11595-020-2261-1

Key words

Navigation