Skip to main content
Log in

Nitrogen Doped Multi-channel Graphite for High Rate and High Capacity Li Ion Battery

  • Advanced material
  • Published:
Journal of Wuhan University of Technology-Mater. Sci. Ed. Aims and scope Submit manuscript

Abstract

Nitrogen doped multi-channel graphite was successfully prepared by using nitrogen doping and KOH etching technologies. The three-electrode and EIS tests indicates that the etched graphite possesses lower electrochemical resistance than the pristine graphite. The coin cell tests demonstrate that N doped multichannel graphite possesses a specific capacity of 361 mAh/g and coulombic efficiencies of 91.4%. No dramatic irreversible capacity loss results from the increased specific surface area (from 1.60 to 2.08 m2/g), removing the need for a trade-off between irreversible capacity loss and surface area. Full polymer cells were fabricated and electrochemical capabilities were measured. In 3C fast charge protocol, the charging capacity can reach 51% within 10 min charge, and 100% within 30 min, demonstrating excellent fast charging characteristic. The fast charge cycle performance with 3C-rate charge and 1C-rate discharge from 4.35-3.0 V was conducted at RT temperature. The capacity retention is 94% after 600 cycles, which shows good cycle performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Goodenough J B, Park K S. The Lithium Ion Rechargeable Battery: A Perspective[J]. J. Am. Chem. Soc., 2013, 135(4): 1167–1176

    Article  CAS  Google Scholar 

  2. Simon P, Gogotsi Y, Dunn B. Where Do Batteries End and Supercapacitors Begin[J]. Science, 2014, 6(343): 1210–1211

    Article  Google Scholar 

  3. Kang B, Ceder G. Battery Materials for Ultrafast Charging and Discharging[ J]. Nature, 2009, 458: 190–198

    Article  CAS  Google Scholar 

  4. Kang K, Meng Y S, Bréger J, et al. Electrodes with High Power and High Capacity for Rechargeable Lithium Batteries[J]. Science, 2006, 311(5763): 977–980

    Article  CAS  Google Scholar 

  5. Zhang H G, Yu X D, Braun P V. Three-Dimensional Bicontinuous Ultrafast-Charge and Discharge Bulk Battery Electrodes[J]. Nat. Nanotechnol., 2011, 6: 277–281

    Article  CAS  Google Scholar 

  6. Li N, Chen Z, Ren W, et al. Flexible Graphene-Based Lithium Ion Batteries with Ultrafast Charge and Discharge Rates[J]. P. Natl. Acad. Sci. USA, 2012, 109(43): 17 360-17 365

    Google Scholar 

  7. Xin S, Guo Y G, Wan L J. Nanocarbon Networks for Advanced Rechargeable Lithium Batteries[J]. Accounts. Chem. Res., 2012, 45(10): 1759–1769

    Article  CAS  Google Scholar 

  8. Gong Y J, Yang S B, Liu Z, et al. Graphene Network Back Boned Architectures for High Performance Lithium Storage[J]. Adv. Mater., 2013, 25(29), 3979–3984

    Article  CAS  Google Scholar 

  9. Marsh H, Yan D S, O’Grady T M, et al. Formation of Active Carbons From Cokes Using Potassium Hydroxide[J]. Carbon, 1984, 22(6): 603–611

    Article  CAS  Google Scholar 

  10. Rubino R S, Takeuchi E S. The Study Of Irreversible Capacity in Lithium-Ion Anodes Prepared with Thermally Oxidized Graphite[J]. J.Power. Source, 1999, 81–82: 373-377

    Google Scholar 

  11. Ein-Eli Yair, Koch V R. Chemical Oxidation: A Route to Enhanced Capacity in Li Ion Graphite Anodes[J]. J. Electrochem. Soc., 1997, 144(9): 2968–2973

    Article  CAS  Google Scholar 

  12. Jang J W, Lee C E, Lyu S C, et al. Structural Study of Nitrogen-Doping Effects in Bamboo-Shaped Multiwalled Carbon Nanotubes[J]. Appl. Phys. Lett., 2004, 84(15): 2877–2879

    Article  CAS  Google Scholar 

  13. Ronning C, Feldermann H, Merk R, et al. Carbon Nitride Deposited Using Energetic Species: A Review on XPS Studies[J]. Phys. Rev. B, 1998, 58(4-15): 2207–2215

    Article  CAS  Google Scholar 

  14. Marton D, Boyd K J, Al-Bayati AH, et al. Carbon Nitride Deposited Using Energetic Species: a Two-Phase System[J]. Phys. Rev. Lett., 1994, 73(1-4): 118–121

    Article  CAS  Google Scholar 

  15. Wang H B, Zhang C J, Liu Z H, et al. Nitrogen-Doped Graphene Nanosheets with Excellent Lithium Storage Properties[J]. J. Mater. Chem., 2011, 21(14): 5430–5434

    Article  CAS  Google Scholar 

  16. Czerw R, Terrones M, Charlier J C, et al. Identification of Electron Donor States in N-Doped Carbon Nanotubes[J]. Nano. Lett., 2001, 1(9): 457–460

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronghui Li  (李荣辉).

Additional information

Funded by College Scientific Research Project of Inner Mongolia Autonomous Region (No.NJZY18159) and Ph D Research Start-up Fund of Hebei GEO University (No.BQ2019003)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Wu, X. & Li, R. Nitrogen Doped Multi-channel Graphite for High Rate and High Capacity Li Ion Battery. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 35, 65–70 (2020). https://doi.org/10.1007/s11595-020-2228-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11595-020-2228-2

Key words

Navigation