Skip to main content
Log in

Investigation of Novel Short Fiber-like Polyaniline/Cerium Nitrate Composite

  • Organic materials
  • Published:
Journal of Wuhan University of Technology-Mater. Sci. Ed. Aims and scope Submit manuscript

Abstract

Polyaniline (PANI)/Ce(NO3)3 composite with short fiber-like shape was synthesized successfully in a poly (2-arcylamido-2-methylpropane sulfonic acid) aqueous solution. A comparison of SEM images found that short fiber-like composites can be obtained by controlling the dosage of Ce(NO3)3. The length and diameter of short fiber-like PANI/Ce(NO3)3 composite was about 630 and 200 nm, respectively. A special conjugated structure had formed via Ce3+ ions and–NH–group in the quinonoid ring of PANI, which was characterized by means of Fourier transform infrared (FTIR) spectroscopy, Ultraviolet-visible (UV-Vis) spectroscopy and X-ray photoelectron spectroscopy (XPS). Short fiber-like PANI/Ce(NO3)3 composite exhibited a high conductivity, a large capacitance and an enhanced anticorrosion property. Linear four-probe method confirmed that the electrical conductivity of composites was improved with the presence of Ce3+ ions. The corrosion potential of PANI/Ce(NO3)3 composite increased to -79 mV at 10 wt% of Ce(NO3)3. Meanwhile, the minimum density of corrosion current (1.4 μA/cm2) was also achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lorestani F, Shahnavaz Z, Nia P M, et al. One–Step Preparation of Silver–Polyaniline Nanotube Composite for Non–Enzymatic Hydrogen Peroxide Detection[J]. Appl. Surf. Sci., 2015, 347: 816–823

    Article  Google Scholar 

  2. Li Z H, Shen Y T, Li Y B, et al. Doping Effects of Cerium Ion on Structure and Electrochemical Properties of Polyaniline[J]. Polym. Int., 2018, 67(1): 121–126

    Article  Google Scholar 

  3. Gao F, Cheng Y, An L, et al. Polyaniline Nanotube–ZnO Composite Materials: Facile Synthesis and Application[J]. J. Wuhan University of Technology–Mater. Sci. Ed., 2015, 30(6): 1 147–1 151

    Article  Google Scholar 

  4. Li Z H, Shen Y T, Li Y B. Facile Synthesis of Polyaniline Hollow Microsphere via Self–Assembly and Its High Electrochemical Performance[ J]. J. Electrochem. Soc., 2018, 165(7): G75–G79

    Google Scholar 

  5. Lei X P, Han D, Wang Y, et al. Synthesis and Electric Properties of Polyethylene Glycol–Modified Gly Ash Floating Bead/Polyaniline Composites[J]. J. Wuhan University of Technology–Mater. Sci. Ed., 2017, 32(1): 197–204

    Article  Google Scholar 

  6. Wang Y M, Chen K, Li T X, et al. One–step and Template–free Synthesis of Itaconic Acid–Doped Polyaniline Nanorods in Aqueous Solution[ J]. High Perform. Polym., 2016, 283(3): 322–330

    Article  Google Scholar 

  7. Dong C F, Xiao K, Chen T, et al. Characterization and Comparison of Conducting Polyaniline Synthesized by Three Different Pathways[J]. J. Wuhan University of Technology–Mater. Sci. Ed., 2011, 26(6): 1 068–1 072

    Article  Google Scholar 

  8. Zhang L, Wan M. Synthesis and Characterization of Self–Assembled Polyaniline Nanotubes Doped with D–10–Camphorsulfonic Acid[J]. Nanotechnology, 2002, 13(6): 750–755

    Article  Google Scholar 

  9. Erdem E, Karaklsla M, Sacak M. The Chemical Synthesis of Conductive Polyaniline Doped with Dicarboxylic Acids[J]. Eur. Polym. J., 2004, 40(4): 785–791

    Article  Google Scholar 

  10. Jelmy E J, Ramakrishnan S, Rangarajan M, et al. Effect of Different Carbon Fillers and Dopant Acids on Electrical Properties of Polyani–line Nanocomposites[J]. Bull. Mater. Sci., 2013, 36(1): 37–44

    Article  Google Scholar 

  11. Gribkov D V, Hultzsch K C, Hampel F. 3,3’–Bis(trisarylsilyl)–Substituted Binaphtholate Rare Earth Metal Catalysts for Asymmetric Hydroamination[ J]. J. Am. Chem. Soc., 2006, 128(11): 3 748–3 759

    Google Scholar 

  12. Slooff L H, Blaaderen A, Polman A, et al. Rare–Earth Doped Polymers for Planar Optical Amplifiers[J]. J. Appl. Phys., 2002, 91(7): 3 955–3 980

    Article  Google Scholar 

  13. Duan C, Sabirianov R F, Mei W N, et al. Electronic, Magnetic and Transport Properties of Rare–Earth Monopnictides[J]. J. Phys. Condens. Matter., 2007, 19(31): 315 220

    Article  Google Scholar 

  14. Liu Y F, Cao Y H, Huang L, et al. Rare Earth–Mg–Ni–Based Hydrogen Storage Alloys as Negative Electrode Materials for Ni/MH Batteries[J]. J. Alloys Compd., 2011, 509(3): 675–686

    Article  Google Scholar 

  15. Kenyon A J. Recent Developments in Rare–Earth Doped Materials for Optoelectronics[J]. Prog. Quantum Electron., 2002, 26(4–5): 225–284

    Article  Google Scholar 

  16. Zhang J L, Wang H, Yang S M, et al. Enhanced Conductivity and Fluorescence of Polyaniline Doped with Eu3+, Tb3+ and Y3+ Ions[J]. J. Appl. Polym. Sci., 2012, 125(4): 2 494–2 501

    Article  Google Scholar 

  17. Li Y B, Li Z H, Zheng F. Polyaniline/Silver/Cerium Nitrate Ternary Composite: Synthesis, Characterization and Enhanced Electrochemical Properties[J]. J. Appl. Polym. Sci., 2015, 132(46): 42 785

    Google Scholar 

  18. Huang Z H, Wang S X, Li H, et al. Thermal Stability of Several Polyaniline/Rare Earth Oxide Composites[J]. J. Therm. Anal. Calorim., 2014, 115(1): 259–266

    Article  Google Scholar 

  19. Johansen H D, Brett C M A, Motheo A J. Corrosion Protection of Aluminium Alloy by Cerium Conversion and Conducting Polymer Duplex Coatings[J]. Corros. Sci., 2012, 63(5): 342–350

    Article  Google Scholar 

  20. Arenas M A, Conde A, de Damborenea J J. Cerium: A Suitable Green Corrosion Inhibitor for Tinplate[J]. Corros. Sci., 2002, 44(3): 511–520

    Article  Google Scholar 

  21. Aramaki K. Treatment of Zinc Surface with Cerium(III) Nitrate to Prevent Zinc Corrosion in Aerated 0.5 M NaCl[J]. Corros. Sci., 2001, 43(11): 2 201–2 215

    Article  Google Scholar 

  22. Cavus S, Gürdag G. Competitive Heavy Metal Removal by Poly(2–Acrylamido–2–Methyl–1–Propane Sulfonic Acid–co–Itaconic Acid) [J]. Polym. Adv. Technol., 2010, 19(9): 1 209–1 217

    Article  Google Scholar 

  23. Ghorbani M, Lashkenari M S, Eisazadeh H. Synthesis and Thermal Stability Studies of Polyaniline/Silver Nanocomposite Based on Reduction of Silver Ions Using Polyaniline[J]. High Perform. Polym., 2011, 23(7): 513–517

    Article  Google Scholar 

  24. Chauhan G S, Garg G. Study in Sorption of Cr6+ and NO3–on Poly(2–Acrylamido–2–Methylpropane–1–Sulfonic Acid) Hydrogels[J]. Desalination, 2009, 239(1–3): 1–9

    Article  Google Scholar 

  25. Yoo J E, Bucholz T L, Jung S Y, et al. Narrowing the Size Distribution of the Polymer Acid Improves PANI Conductivity[J]_. J. Mater. Chem., 2008, 18(26): 3 129–3 135

    Article  Google Scholar 

  26. Li Y B, Li Z H, Zheng F. Polyaniline Hollow Microspheres Synthesized via Self–Assembly Method in a Polymer Acid Aqueous Solution[ J]. Mater. Lett., 2015, 148: 34–36

    Article  Google Scholar 

  27. Zhang C Q, Li G C, Peng H R. Large–Scale Synthesis of Self–Doped Polyaniline Nanofibers[J]. Mater. Lett., 2009, 63(6–7): 592–594

    Article  Google Scholar 

  28. Jeon J W, O’Neal J, Shao L, et al. Charge Storage in Polymer Acid–Doped Polyaniline–Based Layer–by–Layer Electrodes[J]. ACS Appl. Mater. Interfaces, 2013, 5(20): 10 127–10 136

    Article  Google Scholar 

  29. Albuquerque J E, Mattoso L H C, Balogh D T, et al. A Simple Method to Estimate the Oxidation State of Polyanilines[J]. Synth. Met., 2000, 113(1–2): 19–22

    Article  Google Scholar 

  30. Song G P, Han J, Bo J, et al. Synthesis of Polyaniline Nanostructures in Different Lamellar Liquid Crystals and Application to Lubrication[J]. J. Mater. Sci., 2009, 44(3): 715–720

    Article  Google Scholar 

  31. Mallick K, Witcomb M, Scurrell M, et al. Paramagnetic Polyaniline Nanospheres[J]. Chem. Phys. Lett., 2010, 494(4–6): 232–236

    Article  Google Scholar 

  32. Holgado J P, Alvarez R, Munuera G. Study of CeO2 XPS Spectra by Factor Analysis: Reduction of CeO2[J]. Appl. Surf. Sci., 2000, 161(3): 301–315

    Article  Google Scholar 

  33. Qiu L M, Liu F, Zhao L Z, et al. Comparative XPS Study of Surface Reduction for Nanocrystalline Ceria Power[J]. Appl. Surf. Sci., 2006, 252(14): 4 931–4 935

    Article  Google Scholar 

  34. Chen W C, Wen T C, Teng H S. Polyaniline–Deposited Porous Carbon Electrode for Supercapacitor[J]. Electrochim. Acta, 2003, 48(6): 641–649

    Article  Google Scholar 

  35. Yang M M, Cheng B, Song H H, et al. Preparation and Electrochemical Performance of Polyaniline–Based Carbon Nanotubes as Electrode Material for Supercapacitor[J]. Electrochim. Acta, 2010, 55(23): 7 021–7 027

    Article  Google Scholar 

  36. Zhu Y, Hu D, Wan M, et al. Conducting and Superhydrophonic Rambutan–Like Hollow Spheres of Polyaniline[J]. Adv. Mater., 2007, 19(19): 2 092–2 096

    Article  Google Scholar 

  37. Abalyaeva V V, Dremova N N. Electrochemical Properties of Polyaniline Film Doped by Ce3+ Cation[J]. Russ. J. Electrochem., 2013, 49(2): 188–195

    Article  Google Scholar 

  38. Liu J L, Zhou M Q, Fan L Z, et al. Porous Polyaniline Exhibits Highly Enhanced Electrochemical Capacitance Performance[J]. Electrochim. Acta, 2010, 55(20): 5 819–5 822

    Article  Google Scholar 

  39. Li Y, Fang Y Z, Liu H, et al. Free–Standing 3D Polyaniline–CNT/Ni–Fiber Hybrid Electrodes for High–Performance Supercapacitors[J]. Nanoscale, 2012, 4(9): 2 867–2 869

    Article  Google Scholar 

  40. Li Y Z, Xin Z, Xu Q, et al. Facile Prepararion and Enhanced Capacitance of the Polyaniline/Sodium Alginate Nanofiber Network for Supercapacitors[ J]. Langmuir, 2011, 27(10): 6 458–6 463

    Article  Google Scholar 

Download references

Acknowledgements

We thank Professor Tan from the School of Materials Science and Engineering, Central South University for the electrochemical tests and the characterization of the composites.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhihua Li  (李芝华).

Additional information

Funded by National Natural Science Foundation of China (No.11204192) and the Open-End Fund for the Valuable and Precision Instruments of the Central South University (No. CSUZC2014009

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Shen, Y., Li, Y. et al. Investigation of Novel Short Fiber-like Polyaniline/Cerium Nitrate Composite. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 34, 183–188 (2019). https://doi.org/10.1007/s11595-019-2033-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11595-019-2033-y

Key words

Navigation