Skip to main content
Log in

Synthesis and Characterization of Rectorite/ZnO/TiO2 Composites and Their Properties of Adsorption and Photocatalysis for the Removal of Methylene Blue Dye

  • Published:
Journal of Wuhan University of Technology-Mater. Sci. Ed. Aims and scope Submit manuscript

Abstract

As efficient water treatment agents, a novel series of rectorite-based ZnO and TiO2 hybrid composites (REC/ZnO/TiO2) were synthesized and characterized in this study. Effects of experimental parameters including TiO2 mass ratio, solution pH and catalyst dosage on the removal of methyl blue (MB) were also conducted. The presence of a little mass ratio (2%-6%) of TiO2 highly promoted the photoactivity of REC/ZnO/TiO2 in removal of MB dye from aqueous solution, in which ZnO and REC played a role of photocatalyst and adsorbent. The promotion effects of TiO2 may result from the accelerated separation of electron-hole on ZnO. The observed kinetic constant for the degradation of MB over REC/ZnO and REC/ZnO/TiO2 were 0.015 and 0.038 min-1, respectively. The degradation kinetics of MB dye, which followed the Langmuir–Hinshelwood model, had a reaction constant of 0.17 mg/(L·min). The decrease of removal ratio of MB after five repetitive experiments was small, indicating REC/ZnO/TiO2 has great potential as an effective and stable catalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gupta V K, Suhas. Application of Low-Cost Adsorbents for Dye Removal A Review[J]. J. Environ. Manage., 2009, 90(8): 2 313-2 342

    Article  Google Scholar 

  2. Pearce C I, Lloyd J R, Guthrie J T. The Removal of Colour from Textile Wastewater using Whole Bacterial Cells: A Review[J]. Dyes. Pigments, 2003, 58(3): 179–196

    Article  Google Scholar 

  3. Wang J, Bai R. Formic Acid Enhanced Effective Degradation of Methyl Orange Dye in Aqueous Solutions under UV-Vis Irradiation[J]. Water Res., 2016, 101: 103–113

    Article  Google Scholar 

  4. Kudo A, Miseki Y. Heterogeneous Photocatalyst Materials For Water Splitting[J]. Chem. Soc. Rev., 2009, 38: 253–278

    Article  Google Scholar 

  5. Lee K M, Lai C W, Ngai K S, et al. Recent Developments of Zinc Oxide Based Photocatalyst in Water Treatment Technology: A Review[J]. Water Res., 2016,88: 428–448

    Article  Google Scholar 

  6. Zhang X, Wang Y, Liu B, et al. Heterostructures Construction on TiO2 Nanobelts: A Powerful Tool for Building High-Performance Photocatalysts[J]. Appl. Catal. B-Environ., 2017, 202: 620–641

    Article  Google Scholar 

  7. Tan C, Cao X, Wu XJ, et al. Recent Advances in Ultrathin Two-Dimensional Nanomaterials[J]. Chem. Rev., 2017, 117(9): 6225–6331

    Article  Google Scholar 

  8. Pirhashemi M, Habibi-Yangjeh A. Ultrasonic-Assisted Preparation of Plasmonic ZnO/Ag/Ag2WO4 Nanocomposites with High Visible-Light Photocatalytic Performance for Degradation of Organic Pollutants[J]. J. Colloid Interface Sci., 2017, 491: 216–229

    Article  Google Scholar 

  9. Karunakaran C, Dhanalakshmi R. Photocatalytic Performance of Particulate Semiconductors under Natural Sunshine Oxidation of Carboxylic Acids[J]. Sol. Energ. Mater. Sol. C., 2008, 92(5): 588–593

    Article  Google Scholar 

  10. Madhavan J, Muthuraaman B, Murugesan S, et al. Peroxomonosulphate, an Efficient Oxidant for The Photocatalysed Degradation of A Textile Dye, Acid Red 88[J]. Sol. Energ. Mater. Sol. C, 2006, 90(13): 1875–1887

    Article  Google Scholar 

  11. Chen Z, Shuai L, Zheng B, et al. Synthesis of Zinc Oxide Nanoparticles with Good Photocatalytic Activities under Stabilization of Bovine Serum Albumin[J]. J. Wuhan. Univ. Technol., 2017, 32(5): 1061–1066

    Article  Google Scholar 

  12. Zhang G, Lan Z A, Wang X. Conjugated Polymers: Catalysts for Photocatalytic Hydrogen Evolution[J]. Angew. Chem. Int. Ed., 2016, 55(51): 15712–15727

    Article  Google Scholar 

  13. Zhang L, Li J, Chen Z, et al. Preparation of Fenton Reagent with H2O2 Generated by Solar Light-Illuminated Nano-Cu2O/MWNTs Composites[J]. Appl. Catal. A-Gen., 2006, 299(1): 292–297

    Article  Google Scholar 

  14. Nagaraju G, Manjunath K, Ravishankar T N, et al. Ionic liquid-Assisted Hydrothermal Synthesis of TiO2 Nanoparticles and Its Application in Photocatalysis[J]. J. Mater. Sci., 2013, 48(24): 8420–8426

    Article  Google Scholar 

  15. Saikia L, Bhuyan D, Saikia M, et al. Photocatalytic Performance of ZnO Nanomaterials for Self Sensitized Degradation of Malachite Green Dye under Solar Light[J]. Appl. Catal. A-Gen., 2015, 490: 42–49

    Article  Google Scholar 

  16. Li G L, Ma P, Zhang Y F, et al. Synthesis of Cu2O Nanowire Mesocrystals using PTCDA as a Modifier and Their Superior Peroxidase-Like Activity[J]. J. Mater. Sci., 2016, 51(8): 3979–3988

    Article  Google Scholar 

  17. Sarkar A K, Saha A, Tarafder A, et al. Efficient Removal of Toxic Dyes Via Simultaneous Adsorption and Solar Light Driven Photodegradation using Recyclable Functionalized Amylopectin-TiO2-Au Nanocomposite[J]. ACS Sustainable Chem. Eng., 2016, 4(3):1679–1688

    Article  Google Scholar 

  18. Fujishima A, Zhang X, Tryk D. TiO2 Photocatalysis and Related Surface Phenomena[J]. Surf. Sci. Rep., 2008, 63(12): 515–582

    Article  Google Scholar 

  19. Reddy K R, Karthik K V, Prasad S B B, et al. Enhanced Photocatalytic Activity of Nanostructured Titanium Dioxide/Polyaniline Hybrid Photocatalysts[J]. Polyhedron, 2016, 120: 169–174

    Article  Google Scholar 

  20. Podporska-Carroll J, Myles A, Quilty B, et al. Antibacterial Properties of F-Doped ZnO Visible Light Photocatalyst[J]. J. Hazard. Mater., 2017, 324: 39–47

    Article  Google Scholar 

  21. Yi S H, Choi S K, Jang J M, et al. Low-Temperature Growth of ZnO Nanorods by Chemical Bath Deposition[J]. J. Colloid Interface Sci., 2007, 313(2): 705–710

    Article  Google Scholar 

  22. Yang T, Peng J, Zheng Y, et al. Enhanced Photocatalytic Ozonation Degradation of Organic Pollutants by ZnO Modified TiO2 Nanocomposites[J]. Appl. Catal. B-Environ., 2017, 221: 223–234

    Article  Google Scholar 

  23. Ramírez-Ortega D, Meléndez AM, Acevedo-Peña P, et al. Semiconducting Properties of ZnO/TiO2 Composites by Electrochemical Measurements and Their Relationship with Photocatalytic Activity[J]. Electrochim. Acta, 2014, 140(27): 541–549

    Article  Google Scholar 

  24. Cheng C, Amini A, Zhu C, et al. Enhanced Photocatalytic Performance of TiO2-ZnO Hybrid Nanostructures[J]. Sci. Rep., 2014, 4(8): 4181

    Google Scholar 

  25. Sethi D, Sakthivel R. ZnO/TiO2 Composites for Photocatalytic Inactivation of Escherichia Coli[J]. J. Photochem. Photobiol. B, 2017, 168: 117–123

    Article  Google Scholar 

  26. Jo W K, Clament S S N. Enhanced Visible Light-Driven Photocatalytic Performance of ZnO-g-C3N4 Coupled with Graphene Oxide as a Novel Ternary Nanocomposite[J]. J. Hazard. Mater., 2015, 299: 462–470

    Article  Google Scholar 

  27. Gu N, Gao J, Wang K, et al. ZnO–Montmorillonite as Photocatalyst and Flocculant for Inhibition of Cyanobacterial Bloom[J]. Water Air. Soil Poll., 2015, 226(5): 1–12

    Article  Google Scholar 

  28. Kolodziejczak-Radzimska A, Jesionowski T. Zinc Oxide-From Synthesis to Application: A Review[J]. Materials, 2014, 7(4): 2833–2881

    Article  Google Scholar 

  29. Feng X, Guo H, Patel K, et al. High Performance, Recoverable Fe3O4-ZnO Nanoparticles for Enhanced Photocatalytic Degradation of Phenol[J]. Chem. Eng. J., 2014, 244(10): 327–334

    Article  Google Scholar 

  30. Ökte AN, Karamanis D. A Novel Photoresponsive ZnO-Flyash Nanocomposite for Environmental and Energy Applications[J]. Appl. Catal. B-Environ., 2013, 142-143(10): 538–552

    Article  Google Scholar 

  31. Ahmad M, Ahmed E, Hong ZL, et al. A Facile One-Step Approach to Synthesizing ZnO/Graphene Composites for Enhanced Degradation of Methylene Blue under Visible Light[J]. Appl. Surf. Sci., 2013, 274(1): 273–281

    Article  Google Scholar 

  32. Wang C, Shi H, Li Y. Preparation of Bentonite Supported Nano Titanium Dioxide Photocatalysts by Electrostatic Self-Assembly Method[J]. J. Wuhan. Univ. Technol., 2012, 27(4): 603–607

    Article  Google Scholar 

  33. Bailey S W, Brindley G W, Kodama H, et al. Report of the Clay-Minerals-Society Nomenclature Committee for 1980–1981 Nomenclature for Regular Interstratifications[J]. Clay. Clay. Miner., 1982, 30(1): 76–78

    Article  Google Scholar 

  34. Guo Y, Zhang G, Gan H. Synthesis, Characterization and Visible Light Photocatalytic Properties of Bi2WO6/Rectorite Composites[J]. J. Colloid Interface Sci., 2012, 369(1): 323–329

    Article  Google Scholar 

  35. Lu Y, Chang P R, Zheng P, et al. Rectorite–TiO2–Fe3O4 Composites: Assembly, Characterization, Adsorption and Photodegradation[J]. Chem. Eng. J., 2014, 255(255): 49–54

    Article  Google Scholar 

  36. Wu S, Fang J, Xu W, et al. Bismuth-Modified Rectorite with High Visible Light Photocatalytic Activity[J]. J. Mol. Catal. A-chem., 2013, 373(3): 114–120

    Article  Google Scholar 

  37. Zhang Y, Guo Y, Zhang G, et al. Stable TiO2/Rectorite: Preparation, Characterization and Photocatalytic Activity[J]. Appl. Clay. Sci., 2011, 51(3): 335–340

    Article  Google Scholar 

  38. Hanlie H, Xiaoling Z, Miao W, et al. Morphological Characteristics of (K, Na)-Rectorite from Zhongxiang Rectorite Deposit, Hubei, Central China[J]. J. China Univ. Geosci., 2008, 19(1): 38–46

    Article  Google Scholar 

  39. Chen Y, Zhang X, Mao L, et al. Dependence of Kinetics and Pathway of Acetaminophen Photocatalytic Degradation on Irradiation Photon Energy and TiO2 Crystalline[J]. Chem. Eng. J., 2017, 330: 1091–1099

    Article  Google Scholar 

  40. Sakurai K, Mizusawa M. X-ray Diffraction Imaging of Anatase and Rutile[J]. Anal. Chem., 2010, 82(9): 3519–3352

    Article  Google Scholar 

  41. Guo Y, Liu Y. Adsorption Properties of Methylene Blue from Aqueous Solution onto Thermal Modified Rectorite[J]. J. Disper. Sci. Technol., 2014, 35(9): 1351–1359

    Article  Google Scholar 

  42. Zhang G, Liu G, Guo Y. Adsorption of Methylene Blue from Aqueous Solution onto Hydrochloric Acid-Modified Rectorite[J]. J. Wuhan. Univ. Technol., 2011, 26(5): 817–822

    Article  Google Scholar 

  43. Martha S, Reddy KH, Parida KM. Fabrication of In2O3 Modified ZnO for Enhancing Stability, Optical Behaviour, Electronic Properties and Photocatalytic Activity for Hydrogen Production under Visible Light[J]. J. Mater. Chem. A, 2014, 2(10): 3621–3631

    Article  Google Scholar 

  44. Wu ZW, Li Y G, Gao L J, et al. Synthesis of Na-doped ZnO Hollow Spheres with Improved Photocatalytic Activity for Hydrogen Production[J]. Dalton. Trans., 2016, 45(27): 11145–11149

    Article  Google Scholar 

  45. Habibi M H, Hassanzadeh A, Mahdavi S. The Effect of Operational Parameters on the Photocatalytic Degradation of Three Textile Azo Dyes in Aqueous TiO2 Suspensions[J]. J. Photochem. Photobiol. A, 2005, 172(1): 89–96

    Article  Google Scholar 

  46. Gaya U I, Abdullah A H. Heterogeneous Photocatalytic Degradation of Organic Contaminants over Titanium Dioxide: A Review of Fundamentals, Progress and Problems[J]. J. Photochem. Photobiol. C, 2008, 9(1): 1–12

    Article  Google Scholar 

  47. Fujishima A, Zhang X, Tryk D A. TiO2 Photocatalysis and Related Surface Phenomena[J]. Surf. Sci. Rep., 2008, 63(12): 515–582

    Article  Google Scholar 

  48. Oliveira L C A, Gonçalves M, Guerreiro M C, et al. A New Catalyst Material Based on Niobia/Iron Oxide Composite on the Oxidation of Organic Contaminants in Water Via Heterogeneous Fenton Mechanisms[J]. Appl. Catal. A-Gen., 2007, 316(1): 117–124

    Article  Google Scholar 

  49. Shirafuji T, Nomura A, Hayashi Y, et al. Matrix-assisted Laser Desorption Ionization Time-of-Flight Mass Spectrometric Analysis of Degradation Products After Treatment of Methylene Blue Aqueous Solution with Three-Dimensionally Integrated Microsolution Plasma[J]. Jpn. J. Appl. Phys., 2016, 55(1s): 01AH02

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peijiang Zhou  (周培疆).

Additional information

Funded by the National High Technology Research and Development Program of China (No. 2007AA06Z418), the National Natural Science Foundation of China (Nos. 20577036, 20777058, 20977070), the National Natural Science Foundation of Hubei Province, China (No.2015CFA137), the Open Fund of Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory (Wuhan University), and the Fund of Eco-environment Technology R&D and Service Center (Wuhan University)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Zhou, P., Wang, J. et al. Synthesis and Characterization of Rectorite/ZnO/TiO2 Composites and Their Properties of Adsorption and Photocatalysis for the Removal of Methylene Blue Dye. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 33, 729–735 (2018). https://doi.org/10.1007/s11595-018-1885-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11595-018-1885-x

Key words

Navigation