Skip to main content
Log in

Preparation of cerium doped Cu/MIL-53(Al) catalyst and its catalytic activity in CO oxidation reaction

  • Advanced materials
  • Published:
Journal of Wuhan University of Technology-Mater. Sci. Ed. Aims and scope Submit manuscript

Abstract

Metal-organic framework (MOF) material MIL-53(Al) with high thermal stability was prepared by a solvothermal method, serving as a support material of cerium doped copper catalyst (Ce-Cu)/MIL-53(Al) material for CO oxidation with high catalytic activity. The catalytic performance between the (Cu-Ce)/MIL-53(Al) and the Cu/MIL-53(Al) catalytic material was compared to understand the catalytic behavior of the catalysts. The catalysts were characterized by thermogravimetric-differential scanning calorimetry (TG-DSC), N2 adsorption- desorption, X-ray diffraction (XRD), and transmission electron microscopy (TEM). The characterization results showed that MIL-53(Al) had good stability and high surface areas, the (Ce-Cu) nanoparticles on the MIL-53(Al) support was uniform. Therefore, the heterogeneous catalytic composite materials (Ce-Cu)/MIL-53(Al) catalyst exhibited much higher activity than that of the Cu/MIL- 53(Al) catalyst in CO oxidation test, with 100% conversion at 80 °C. The results reveal that (Cu-Ce)/MIL- 53(Al) is the suitable candidate for achieving low temperature and higher activity CO oxidation catalyst of MOFs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tan H Y, Wu J P. Performance of a Metal-organic Framework MIL-53(Al)-Supported Cobalt Catalyst in the CO Catalytic Oxidation Reaction[J]. Acta Phys.-Chim. Sin., 2014, 30: 715–722

    Google Scholar 

  2. Jiang H L, Liu B, Akita T, et al. Au@ ZIF-8: CO Oxidation over Gold Nanoparticles Deposited to Metal-organic Framework[J]. J. Am. Chem. Soc., 2009, 131: 11302–11303

    Article  Google Scholar 

  3. Liang Q, Zhao Z, Liu J, et al. Pd Nanoparticles Deposited on Metal-organic Framework of MIL-53(Al): an Active Catalyst for CO Oxidation[J]. Acta Phys.-Chim. Sin., 2014, 30: 129–134

    Google Scholar 

  4. Zhao X, Xiao B, Fletcher A J, et al. Hysteretic Adsorption and Desorption of Hydrogen by Nanoporous Metal-organic Frameworks[J]. Science, 2004, 306: 1012–1015

    Article  Google Scholar 

  5. Chae H K, Siberio-Pérez D Y, Kim J, et al. A Route to High Surface Area, Porosity and Inclusion of Large Molecules in Crystals[J]. Nature, 2004, 427: 523–527

    Article  Google Scholar 

  6. Feng P, Bu X, Stucky G D. Hydrothermal Syntheses and Structural Characterization of Zeolite Analogue Compounds Based on Cobalt Phosphate[J]. Nature, 1997, 388: 735–741

    Article  Google Scholar 

  7. Lu Y, Tonigold M, Bredenkötter B, et al. A Cobalt (II)-containing Metal-organic Framework Showing Catalytic Activity in Oxidation Reactions[J]. Z. Anorg. Allg. Chem., 2008, 634: 2411–2417

    Article  Google Scholar 

  8. Jiang D, Mallat T, Meier D M, et al. Copper Metal-organic Framework: Structure and Activity in the Allylic Oxidation of Cyclohexene with Molecular Oxygen[J]. J. Cater., 2010, 270: 26–33

    Article  Google Scholar 

  9. Schlichte K, Kratzke T, Kaskel S. Improved Synthesis, Thermal Stability and Catalytic Properties of the Metal-organic Framework Compound Cu3(BTC)2[J]. Mirpopor. Mesopor. Mat., 2004, 73: 81–88

    Article  Google Scholar 

  10. Huang Y, Liu S, Lin Z, et al. Facile Synthesis of Palladium Nanoparticles Encapsulated in Amine-functionalized Mesoporous Metal-organic Frameworks and Catalytic for Dehalogenation of Aryl Chlorides[J]. J. Cater., 2012, 292: 111–117

    Article  Google Scholar 

  11. Yaghi O, Li H, Groy T. Construction of Porous Solids from Hydrogen-bonded Metal Complexes of 1, 3, 5-benzenetricarboxylic Acid[J]. J. Am. Chem. Soc., 1996, 118(38): 9096–9101

    Article  Google Scholar 

  12. Jiang D, Mallat T, Krumeich F, et al. Polymer-assisted Synthesis of Nanocrystalline Copper-based Metal-organic Framework for Amine Oxidation[J]. Catal. Commun., 2011, 12: 602–605

    Article  Google Scholar 

  13. Ishida T, Nagaoka M, Akita T, et al. Deposition of Gold Clusters on Porous Coordination Polymers by Solid Grinding and Their Catalytic Activity in Aerobic Oxidation of Alcohols[J]. Chem. Eur. J., 2008, 14: 8456–8460

    Article  Google Scholar 

  14. Brown K, Zolezzi S, Aguirre P, et al. [Cu (H btec)(bipy)]∞: a Novel Metal Organic Framework (MOF) as Heterogeneous Catalyst for the Oxidation of Olefins[J]. Dalton Trans., 2009, 10: 1422–1427

    Article  Google Scholar 

  15. Tonigold M, Lu Y, Bredenkötter B, et al. Heterogeneous Catalytic Oxidation by MFU-1: A Cobalt (II)-containing Metal-organic Framework[J]. Angew Chem. Int. Ed., 2009, 48: 7546–7550

    Article  Google Scholar 

  16. Marx S, Kleist W, Baiker A. Synthesis, Structural Properties, and Catalytic Behavior of Cu-BTC and Mixed-linker Cu-BTC-PyDC in the Oxidation of Benzene Derivatives[J]. J. Cater., 2011, 281: 76–87

    Article  Google Scholar 

  17. Sun C Y, Liu S X, Liang D D, et al. Highly Stable Crystalline Catalysts Based on a Microporous Metal-organic Framework and Polyoxometalates[J]. J. Am. Chem. Soc., 2009, 131: 1883–1888

    Article  Google Scholar 

  18. Wee L H, Bajpe S R, Janssens N, et al. Convenient Synthesis of Cu3(BTC)2 Encapsulated Keggin Heteropolyacid Nanomaterial for Application in Catalysis[J]. Chem. Commun., 2010, 46: 8186–8188

    Article  Google Scholar 

  19. Qiu W G, Wang Y, Li C Q, et al. Effect of Activation Temperature on Catalytic Performance of CuBTC for CO Oxidation[J]. Chin. J. Catal., 2012, 33: 986–992

    Article  Google Scholar 

  20. Tan Z D, Tan H Y, Shi X Y, et al. Metal-organic Framework MIL-53 (Al)-supported Copper Catalyst for CO Catalytic Oxidation Reaction[J]. Inorg Chem. Commun., 2015, 61: 128–131

    Article  Google Scholar 

  21. Kuo C H, Li W, Song W, et al. Facile Synthesis of Co3O4@ CNT with High Catalytic Activity for CO Oxidation under Moisture-rich Conditions[J]. ACS Appl. Mater. Inter., 2014, 6: 11311–11317

    Article  Google Scholar 

  22. Lou Y, Cao X M, Lan J, et al. Ultralow-temperature CO oxidation on an In2O3-Co3O4 Catalyst: a Strategy to Tune CO Adsorption Strength and Oxygen Activation Simultaneously[J]. Chem. Commun., 2014, 50: 6835–6838

    Article  Google Scholar 

  23. Song W, Poyraz A S, Meng Y, et al. Mesoporous Co3O4 with Controlled Porosity: Inverse Micelle Synthesis and High-Performance Catalytic CO Oxidation at-60 °C [J]. Chem. Mater., 2014, 26: 4629–4639

    Article  Google Scholar 

  24. Xiao J, Wan L, Wang X, et al. Mesoporous Mn3O4-CoO Core-shell Spheres Wrapped by Carbon Nanotubes: a High Performance Catalyst for the Oxygen Reduction Reaction and CO Oxidation[J]. J. Mater. Chem. A, 2014, 2: 3794–3800

    Article  Google Scholar 

  25. Díaz A A, Cecilia J, Santos L D, et al. Characterization and Performance in Preferential Oxidation of CO of CuO-CeO2 Catalysts Synthesized using Polymethyl Metacrylate (PMMA) as Template[J]. Int. J. Hydrogen Energ, 2015, 40: 11254–11260

    Article  Google Scholar 

  26. Zeng S H, Zhang W L, Śliwa M, et al. Comparative Study of CeO2/CuO and CuO/CeO2 Catalysts on Catalytic Performance for Preferential CO Oxidation[J]. Int. J. Hydrogen Energ., 2013, 38: 3597–3605

    Article  Google Scholar 

  27. Baneshi J, Haghighi M, Jodeiri N, et al. Homogeneous Precipitation Synthesis of CuO-ZrO2-CeO2-Al2O3 Nanocatalyst used in Hydrogen Production via Methanol Steam Reforming for Fuel Cell Applications[J]. Energy Convers. Manage., 2014, 87: 928–937

    Article  Google Scholar 

  28. Qi L, Yu Q, Dai Y, et al. Influence of Cerium Precursors on the Structure and Reducibility of Mesoporous CuO-CeO2 Catalysts for CO Oxidation[J]. Appl. Catal. B., 2012, 119: 308–320

    Article  Google Scholar 

  29. Reyes-Carmona Á, Arango-Díaz A, Moretti E, et al. CuO/CeO2 Supported on Zr doped SBA-15 as Catalysts for Preferential CO Oxidation (CO-PROX)[J]. J. Power Sources, 2011, 196: 4382–4387

    Article  Google Scholar 

  30. Tang C, Sun J, Yao X, et al. Efficient Fabrication of Active CuO-CeO2/SBA-15 Catalysts for Preferential Oxidation of CO by Solid State Impregnation[J]. Appl. Catal. B, 2014, 146: 201–212

    Article  Google Scholar 

  31. Ye J Y, Liu C J. Cu3(BTC)2: CO Oxidation over MOF Based Catalysts[J]. Chem. Commun., 2011, 47: 2167–2169

    Article  Google Scholar 

  32. Tan H Y, Liu C, Yan Y F. Simple Preparation of Crystal Co3(BTC)2·12H2O and Its Catalytic Activity in CO Oxidation Reaction[J]. J. Wuhan University of Technology-Mater. Sci. Ed., 2015, 30: 71–75

    Article  Google Scholar 

  33. Li T Y, Xiang G L, Zhuang J, et al. Enhanced Catalytic Performance of Assembled Ceria Necklace Nanowires by Ni Doping[J]. Chem. Commun., 2011, 47: 6060–6061

    Article  Google Scholar 

  34. Yu Q, Wu X X, Tang C J, et al. Textural, Structural, and Morphological Characterizations and Catalytic Activity of Nanosized CeO2-MOx (M= Mg2+, Al3+, Si4+) Mixed Oxides for CO Oxidation[J]. J. Colloid Interface Sci., 2011, 354: 341–352

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the Key Laboratory of Catalysis and Materials Science of the State Ethnic Affairs Commission&Ministry of Education, Hubei Province, South-Central University for Nationalities for their measurement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weibing Hu  (胡卫兵).

Additional information

Funded by the Guiding Research Project of Hubei Province Department of Education (No. B2016098)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, H., Zhou, Y., Yan, Y. et al. Preparation of cerium doped Cu/MIL-53(Al) catalyst and its catalytic activity in CO oxidation reaction. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 32, 23–28 (2017). https://doi.org/10.1007/s11595-017-1551-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11595-017-1551-8

Key words

Navigation