Skip to main content
Log in

Design of structural left-handed material based on topology optimization

  • Published:
Journal of Wuhan University of Technology-Mater. Sci. Ed. Aims and scope Submit manuscript

Abstract

An effective method to design structural Left-handed material(LHM) was proposed. A commercial finite element software HFSS and S-parameter retrieval method were used to determine the effective constitutive parameters of the metamaterials, and topology optimization technique was introduced to design the microstructure configurations of the materials with desired electromagnetic characteristics. The material considered was a periodic array of dielectric substrates attached with metal film pieces. By controlling the arrangements of the metal film pieces in the design domain, the potential microstructure with desired electromagnetic characteristics can be obtained finally. Two different LHMs were obtained with maximum bandwidth of negative refraction, and the experimental results show that negative refractive indices appear while the metamaterials have simultaneously negative permittivity and negative permeability. Topology optimization technique is found to be an effective tool for configuration design of LHMs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Veselago VG. The Electrodynamics of Substances with Simultaneously Negative Value of e ane u[J]. Sov. Phys. Usp., 1968, 10: 509–514

    Article  ADS  Google Scholar 

  2. Pendry JB, Holden AJ and Stewart WJ. Extremely Low Frequency Plasmons in Metallic Mesostructures[J]. Phys. Rev. Lett., 1996,76: 4773–4776

    Article  CAS  PubMed  ADS  Google Scholar 

  3. Pendry JB, Holden AJ, Robbins DJ and Stewart WJ. Low Frequency Plasmons in Thin-wire Structures[J]. J. Phys.: Condens. Matter., 1998, 10: 4785–4809

    Article  CAS  ADS  Google Scholar 

  4. Pendry JB, Holden AJ, Robbins DL. Magnetism from Conductors and Enhanced Nonlinear Phenomena[J]. IEEE Trans. Microwave Theory and Tech., 1999, 47: 2075–2084

    Article  ADS  Google Scholar 

  5. Smith DR, Padilla WJ, Vier DC, Nemat-Nasser SC and Schultz S. Composite Medium with Simultaneously Negative Permeability and Permittivity[J]. Phys. Rev. Lett., 2000, 84: 4184–4187

    Article  CAS  PubMed  ADS  Google Scholar 

  6. Shelby RA, Smith DR, Nemat-Nasser SC and Schultz S. Microwave Transmission through a Two-dimensional, Isotropic, Left-handed Metamaterial[J]. Appl. Phys. Lett., 2001, 78: 489–491

    Article  CAS  ADS  Google Scholar 

  7. Shelby RA, Smith DR, Schultz S. Experimental Verification of a Negative Index of Refraction[J]. Science, 2001, 292: 77–79

    Article  CAS  PubMed  ADS  Google Scholar 

  8. Smith DR, Pendry JB, and Wiltshire MCK. Metamaterials and Negative Refractive Index[J]. Science, 2004, 305: 788–792

    Article  CAS  PubMed  ADS  Google Scholar 

  9. Ramakrishna SA. Physics of Negative Refraction Index Materials[J]. Rep. Prog. Phys., 2005, 68: 449–521

    Article  ADS  Google Scholar 

  10. Zhang L, Tuttle G and Soukoulis CM. GHz Magnetic Response of Split Ring Resonators[J]. Photon. and Nanostruct., 2004, 2: 155–159

    Article  ADS  Google Scholar 

  11. Kafesaki M, Koschny Th, Penciu RS, Gundogdu TF, Economou EN and Soukoulis CM. Left-handed Metamaterials: Detailed Numerical Studies of the Transmission Properties[ J]. J. Opt. A: Pure. Appl. Opt., 2005, 7: S12

    Article  ADS  Google Scholar 

  12. Cai XB, Hu GK. Pat Shape Left-handed Material and Relative Band-width of Analogous Metamaterials[C]. Proc. of the International Symposium on Biophotonics, Nanophotonic and Metamatirials, 2006, 517

  13. Zhu WR, Zhao XP and Ji N. Double Bands of Negative Refractive Index in the Left-handed Metamaterials with Asymmetric Defects[J]. Appl. Phys. Lett., 2007, 90: 011911

    Article  ADS  Google Scholar 

  14. Simovski CR, He LX. Frequency Range and Explicit Expressions for Negative Permittivity and Permeability for an Isotropic Medium Formed by a Lattice of Perfectly Conducting Omega Particles[J]. Phys. Lett. A, 2003, 311: 254–263

    Article  CAS  ADS  Google Scholar 

  15. Chen HS, Ran LX and Huangfu JT. Left-handed Materials Composed of only S-shaped Resonators[J]. Phys. Rev. E, 2004, 70: 057605

    Article  ADS  Google Scholar 

  16. Chen HS, Ran LX and Huangfu JT. Negative Refraction of a Combined Double S-shaped Metamaterial[J]. Appl. Phys. Lett., 2005, 86: 151909

    Article  ADS  Google Scholar 

  17. Zhou JF, Zhang L, Tuttle G, Koschny Th and Soukoulis CM. Negative Index Materials Using Simple Short Wire Pairs[J]. Phys. Rev. B, 2006, 73: 041101

    Article  ADS  Google Scholar 

  18. Zhou JF, Koschny Th, Zhang L, Tuttle G and Soukoulis CM. Experimental Demonstration of Negative Index of Refraction[ J]. Appl. Phys. Lett., 2006, 88: 221103

    Article  ADS  Google Scholar 

  19. Kafesaki M, Tsiapa I, Katsarekes N, Koschny Th, Soukoulis CM and Economou EN. Left-handed Metamaterials: The Fishnet Structure and Its Variations[J]. Phys. Rev. B, 2007,75: 235114

    Article  ADS  Google Scholar 

  20. Liu YH, Luo CR and Zhao XP. H-shaped Structure of Left-handed Metamaterials with Simultaneous Negative Permittivity and Permeability[J]. Acta Phys. Sinica, 2007, 56: 5883

    CAS  Google Scholar 

  21. Zhao HJ, Zhou J, Zhao Q, Li B and Kang L. Magnetotunable Left-handed Material Consisting of Yttrium Iron Garnet Slab and Metallic Wires[J]. Appl. Phys. Lett., 2007, 91: 131107

    Article  ADS  Google Scholar 

  22. Eschenauer HA, Olhoff N. Topology Optimization of Continuum Structures: A Review[J]. Appl. Mech. Rev., 2001, 54(4): 331–390

    Article  Google Scholar 

  23. Li Jiachun, Ye Bangyan, Tang Yong, Guan Qiming, Yang Xudong. Evolutionary Topology Optimization for Heat Conduction Fields[J]. J. Wuhan Univ. Technol., 2006, 28(S3): 105–110

    CAS  Google Scholar 

  24. Zhang Yongcun, Liu Shutian. Design of Conducting Paths Based on Topology Optimization[J]. Heat Mass Transfer, 2008, 44: 1217–1227

    Article  ADS  Google Scholar 

  25. Smith DR, Schultz S, Markos P and Soukoulis CM. Determination of Effective Permittivity and Permeability of Metamaterials from Reflection and Transmission Coefficients[ J]. Phys. Rev. B, 2002, 65: 195104

    Article  ADS  Google Scholar 

  26. Smith DR, Vier DC, Koschny Th, and Soukoulis CM. Electromagnetic Parameter Retrieval from Inhomogeneous Metamaterials[J]. Phys. Rev. E, 2005, 71: 036617

    Article  CAS  ADS  Google Scholar 

  27. Chen XD, Grzegorezyk TM, Wu BI, Pacheco J and Kong JA. Robust Method to Retrieve the Constitutive Effective Parameters of Metamaterials[J]. Phys. Rev. E, 2004, 70: 016608

    Article  ADS  Google Scholar 

  28. Hussein MI, Hamza K and Hulbert GM. Multiobjective Evolutionary Optimization of Periodic Layered Materials for Desired Wave Dispersion Characteristics[J]. Struct. Multidisc Optim., 2006, 31: 60–75

    Article  Google Scholar 

  29. Markos P, Soukoulis CM. Transmission Properties and Effective Electromagnetic Parameters of Double Negative Metamaterials[J]. Opt. Express, 2003, 11: 649–661

    Article  PubMed  ADS  Google Scholar 

  30. Koschny T, Markos P, Smith DR, and Soukoulis CM. Resonant and Antiresonant Frequency Dependence of the Effective Parameters of Metamaterials[J]. Phys. Rev. E, 2003, 68: 065602

    Article  CAS  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shutian Liu  (刘书田).

Additional information

Funded by the National Natural Science Foundation of China (Nos. 90605002, 90816025 and 10721062) and the National Basic Research Program of China (No. 2006CB601205)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, W., Liu, S. & Dong, Y. Design of structural left-handed material based on topology optimization. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 25, 282–286 (2010). https://doi.org/10.1007/s11595-010-2282-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11595-010-2282-2

Key words

Navigation