Skip to main content
Log in

A simple proof technique for scheduling models with learning effects

  • Original Paper
  • Published:
Optimization Letters Aims and scope Submit manuscript

Abstract

The majority of the previous works concerning scheduling problems with learning effects employed several complicated lemmas to prove the polynomial solvable properties of their models. To simplify these proofs, this paper proposes a simpler technique based on the famous Lagrange mean value theorem and the common adding-and-subtracting-terms operation in mathematics. The re-argumentation of known properties for a general model and the exploitation of a new property verify the effectiveness of this proposed technique and exhibit its simplicity. Moreover, the proof technique is applicable to other similar problems because the technique requires only the prerequisites of the Lagrange mean value theorem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bachman, A., Janiak, A.: Scheduling jobs with position-dependent processing times. J. Oper. Res. Soc. 55(3), 257–264 (2004)

    Article  MATH  Google Scholar 

  2. Biskup, D.: Single-machine scheduling with learning considerations. Eur. J. Oper. Res. 115(1), 173–178 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  3. Biskup, D.: A state-of-the-art review on scheduling with learning effects. Eur. J. Oper. Res. 188(2), 315–329 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  4. Cheng, T.C.E., Lai, P.J., Wu, C.C., Lee, W.C.: Single-machine scheduling with sum-of-logarithm-processing-times-based learning considerations. Inform. Sci. 179(18), 3127–3135 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  5. Cheng, T.C.E., Wu, C.C., Lee, W.C.: Some scheduling problems with sum-of-processing-times-based and job-position-based learning effects. Inform. Sci. 178(11), 2476–2487 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  6. Koulamas, C., Kyparisis, G.J.: Single-machine and two-machine flowshop scheduling with general learning functions. Eur. J. Oper. Res. 178(2), 402–407 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  7. Kuo, W.H., Yang, D.L.: Minimizing the total completion time in a single-machine scheduling problem with a time-dependent learning effect. Eur. J. Oper. Res. 174(2), 1184–1190 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  8. Lai, P.J., Lee, W.C.: Single-machine scheduling with general sum-of-processing-time-based and position-based learning effects. Omega. 39(5), 467–471 (2011)

    Article  MathSciNet  Google Scholar 

  9. Lee, W.C., Lai, P.J.: Scheduling problems with general effects of deterioration and learning. Inform. Sci. 181(6), 1164–1170 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  10. Low, C., Lin, W.Y.: Some scheduling problems with time-dependent learning effect and deteriorating jobs. Appl. Math. Model. (2013)

  11. Lu, Y.Y., Wang, J.B.: Some single-machine scheduling with sum-of-processing-time-based and job-position-based processing times. Appl. Math. Model. (2013)

  12. Mosheiov, G., Sidney, J.B.: Scheduling with general job-dependent learning curves. Eur. J. Oper. Res. 147(3), 665–670 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  13. Wang, J.B.: Single-machine scheduling with past-sequence-dependent setup times and time-dependent learning effect. Comput. Ind. Eng. 55(3), 584–591 (2008)

    Article  Google Scholar 

  14. Wang, J.B., Wang, J.J.: Scheduling jobs with a general learning effect model. Appl. Math. Model. 37(4), 2364–2373 (2013)

    Article  MathSciNet  Google Scholar 

  15. Wang, J.B., Wang, M.Z.: A revision of machine scheduling problems with a general learning effect. Math. Comput. Model. 53(1), 330–336 (2011)

    Article  MATH  Google Scholar 

  16. Wu, C.C., Lee, W.C.: Single-machine scheduling problems with a learning effect. Appl. Math. Model. 32(7), 1191–1197 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  17. Yang, D.L., Cheng, T., Kuo, W.H.: Scheduling with a general learning effect. Int. J. Adv. Manuf. Technol. pp. 1–13 (2013)

  18. Yang, D.L., Kuo, W.H.: Single-machine scheduling with an actual time-dependent learning effect. J. Oper. Res. Soc. 58(10), 1348–1353 (2007)

    Article  MATH  Google Scholar 

  19. Yin, Y., Xu, D., Sun, K., Li, H.: Some scheduling problems with general position-dependent and time-dependent learning effects. Inform. Sci. 179(14), 2416–2425 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  20. Yin, Y., Xu, D., Wang, J.: Single-machine scheduling with a general sum-of-actual-processing-times-based and job-position-based learning effect. Appl. Math. Model. 34(11), 3623–3630 (2010)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors would like to thank anonymous reviewers for their helpful comments. This work was supported by the National Natural Science Foundation of China under grant 71101003, 91224007 and 7133200312, and the Key Laboratory of Satellite Mapping Technology and Application, National Administration of Surveying, Mapping and Geo-information.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaiping Luo.

Appendices

Appendix A: The lemmas used by the majority of papers in scheduling with learning effects

The following lemmas are derived from [19]. However, the lemmas used by other related papers are identical or similar.

Lemma 4.1

(Lemma 2.2 in [19]) If \(f:[0, +\infty ) \mapsto (0, 1]\) is a differentiable non-increasing function and its derivative \(f'\) is non-decreasing over \([0, +\infty )\), then \((1-\alpha )f(a) + \alpha \lambda f(a+t) - \lambda f(a+ \alpha t) \leqslant 0\) for \(\alpha \geqslant 1, 0 < \lambda \leqslant 1, a \geqslant 0\) and \(t \geqslant 0\).

Proof

Define a function \(F(t)=(1-\alpha )f(a) + \alpha \lambda f(a+t) - \lambda f(a+ \alpha t)\), then take its first derivative.

$$\begin{aligned} F'(t)=\alpha \lambda f'(a+t)-\alpha \lambda f'(a+\alpha t)=\alpha \lambda (f'(a+t)-f'(a+\alpha t)) \end{aligned}$$

Since \(\alpha \geqslant 1, t \geqslant 0\) and \(f'\) is non-decreasing, \(f'(a+t)-f'(a+\alpha t) \leqslant 0\), i.e., \(F'(t) \leqslant 0\). This implies that \(F(t)\) is non-increasing over \([0, +\infty )\). Thus, for \(\alpha \geqslant 1, 0 < \lambda \leqslant 1\) and \(a \geqslant 0\),

$$\begin{aligned} F(t) \leqslant F(0)=(1-\alpha )f(a) + \alpha \lambda f(a)-\lambda f(a)=(1-\alpha )(1-\lambda )f(a) \leqslant 0. \end{aligned}$$

This completes the proof. \(\square \)

Lemma 4.2

(Lemma 2.3 in [19]) If \(f:[0, + \infty ) \mapsto (0, 1]\) is a differentiable non-increasing function and its derivative \(f'\) is non-decreasing over \([0, +\infty )\), then \(f(a) + \lambda {\lambda _2} tf'(a + t) - \lambda {\lambda _1}f(a + t) \geqslant 0\) for \(0 < \lambda \leqslant 1, 0 \leqslant {\lambda _1} \leqslant {\lambda _2} \leqslant 1, a \geqslant 0\) and \(t \geqslant 0\).

Proof

Define a function \(F(\lambda _1,\lambda _2, t)=f(a) + \lambda {\lambda _2} tf'(a + t) - \lambda {\lambda _1}f(a + t)\), then \(\frac{\partial F}{\partial \lambda _1}=-\lambda f(a+t) \leqslant 0\), \(\frac{\partial F}{\partial \lambda _2}=\lambda tf'(a+t) \leqslant 0\). Thus, for \(0 < \lambda \leqslant 1, 0 \leqslant {\lambda _1} \leqslant {\lambda _2} \leqslant 1\) and \(a \geqslant 0\),

$$\begin{aligned} F(\lambda _1,\lambda _2, t) \geqslant F(1,1,t)=f(a)+\lambda tf'(a+t)-\lambda f(a+t). \end{aligned}$$

By Lagrange mean value theorem, \(\exists \xi \in (a, a+t)\), s.t., \(f(a+t)-f(t)=f'(\xi )t\). Because of \(0 < \lambda \leqslant 1, t \geqslant 0\) and \(f'\) is non-decreasing,

$$\begin{aligned} F(\lambda _1,\lambda _2, t)\geqslant & {} f(a)+\lambda tf'(a+t)-\lambda f(a+t)\\\geqslant & {} \lambda f(a)+\lambda tf'(a+t)-\lambda f(a+t)\\= & {} \lambda t \left( f'(a+t)-f'(\xi ) \right) \geqslant 0. \end{aligned}$$

This completes the proof. \(\square \)

Lemma 4.3

(Lemma 2.4 in [19]) If \(f:[0, + \infty ) \mapsto (0, 1]\) is a differentiable non-increasing function and its derivative \(f'\) is non-decreasing over \([0, + \infty )\), then \((\alpha - 1)f(a) + \lambda {\lambda _2}f(a + \alpha t) - \alpha \lambda {\lambda _1}f(a + t) \geqslant 0\) for \(\alpha \geqslant 1, 0 < \lambda \leqslant 1, 0 \leqslant {\lambda _1} \leqslant {\lambda _2} \leqslant 1,a \geqslant 0\) and \(t \geqslant 0\).

Proof

Define a function \(F(\alpha )=(\alpha - 1)f(a) + \lambda {\lambda _2}f(a + \alpha t) - \alpha \lambda {\lambda _1}f(a + t)\), then

$$\begin{aligned} F'(\alpha )=f(a)+\lambda {\lambda _2}f'(a + \alpha t)-\lambda {\lambda _1}f(a + t). \end{aligned}$$

By the second lemma above, \(F'(\alpha ) \geqslant F'(1)=f(a)+\lambda {\lambda _2}f'(a + t)-\lambda {\lambda _1}f(a + t) \geqslant 0\). This implies that \(F(\alpha )\) is non-decreasing. Thus, for \(0 < \lambda \leqslant 1, 0 \leqslant {\lambda _1} \leqslant {\lambda _2} \leqslant 1\) and \(a \geqslant 0\), we have

$$\begin{aligned} F(\alpha )\geqslant F(1)=\lambda {\lambda _2}f(a + t) - \lambda {\lambda _1}f(a + t)=\lambda f(a+t)(\lambda _2 - \lambda _1) \geqslant 0. \end{aligned}$$

This completes the proof. \(\square \)

Appendix B: Two examples together used the Lagrange mean value theorem and the adding-and-subtracting-terms operation

Example 1

If a continuous function is differentiable on an open interval but unbounded, then its first derivative is also unbounded.

Proof

Let \(f(x)\) be a differentiable and unbounded function on \((a,\,b)\). Fix a point \(t \in (a,\,b)\). By the Lagrange mean value theorem, \(\forall x \in (a,\,b)\), \(x \ne t\), there exists a point \(\xi \) between \(x\) and \(t\) such that \(f(x)-f(t)=f'(\xi )(x-t)\).

Assume that \(f'(x)\) is bounded, i.e., \(\exists N>0\) such that \(|f'(x)|<N\).

$$\begin{aligned} |f(x)|= & {} |f(x)-\underline{f(t)}+\underline{f(t)}| \leqslant |f(x)-f(t)|+|f(t)|\nonumber \\ \quad= & {} |f'(\xi )(x-t)|+|f(t)| \leqslant N(b-a)+|f(t)| \end{aligned}$$
(4)

The inequality Eq. (4) indicates that function \(f\) is bounded at point \(x\). Since \(x\) is an arbitrary point on the open interval \((a,b)\), \(f(x)\) is bounded on \((a,\,b)\). This leads to a contradiction with the known condition: its unboundedness. \(\square \)

Example 2

The second derivative of function \(f(x)\) is negative on \([b,\, \infty )\). If \(f(b)>0\) and \(f'(b)<0\), then equation \(f(x)=0\) has a single root on \((b,\, \infty )\).

Proof

\(f'(x)<f'(b)<0\) because of \(f''(x)<0\). By the Lagrange mean value theorem, we have

$$\begin{aligned} f(x)=f(x){-} \underline{f(b)} + \underline{f(b)} = f'(\xi )(x{-}b)+f(b)<f'(b)(x{-}b)+f(b). \end{aligned}$$
(5)

\(\mathop {\lim }\limits _{x \rightarrow \infty }{f(x)} \leqslant \mathop {\lim }\limits _{x \rightarrow \infty }{f'(b)(x-b)+f(b)} = - \infty \), thus \(\mathop {\lim }\limits _{x \rightarrow \infty }{f(x)}=- \infty \). Note \(f(b)>0\). By the intermediate value theorem, \(\exists x_0 \in (b, \, \infty )\) such that \(f(x_0)=0\).

Assume that there is another point \(x_1 \in (b, \, \infty )\), \(x_1 \ne x_0\), such that \(f(x_1)=0\). By the Lagrange mean value theorem, there is a point \(\zeta \) between \(x_0\) and \(x_1\) such that \(f'(\zeta )=0\). This contradicts with \(f'(x)<0\) at \([b,\, \infty )\). Hence, equation \(f(x)=0\) has a single root on \((b,\, \infty )\). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, K., Zhang, X. A simple proof technique for scheduling models with learning effects. Optim Lett 9, 1411–1420 (2015). https://doi.org/10.1007/s11590-015-0870-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11590-015-0870-y

Keywords

Navigation