Skip to main content
Log in

On the shock dynamics of weak converging shock waves in solid materials

  • Published:
Ricerche di Matematica Aims and scope Submit manuscript

Abstract

We presented a geometrical shock dynamics model to predict the behavior of weak converging shock waves in solid materials. Taking into consideration Mie–Grüneisen equation of state the analytical solution is obtained for the flow behind the converging shock-front propagating in solids. The analytical formaluas are also obtained for the shock velocity, pressure, density, particle velocity, temperature, speed of sound, adiabatic bulk modulus, and change-in-entropy behind or across the weak converging shock wave. For this it was assumed that the medium is a homogeneous and isotropic, and the disturbances behind the front do not overtake the converging shock waves. The effects due to an increase in (i) the propagation distance from the axis or centre of convergence, (ii) the Grüneisen parameter, and (iii) the material parameter, are explored on the shock velocity and quantities in the shocked titanium, brass, tantalum, iron, stainless steel 304, aluminum 6061-T6 and OFHC copper. The geometrical shock dynamics model provided a clear picture of whether and how the properties of solids are affected due to the passage of converging shock inside the solid materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Guderley, G.: Powerful cylindrical and spherical compression shocks in the neighborhood of the centre of the sphere and of the cylinder axis. Luftfahrtforschung 19, 302–312 (1942)

    MathSciNet  Google Scholar 

  2. Landau, L.D., Lifshitz, E.M.: Course of Theoretical Physics: Fluid Mechanics. Pergamon Press, Oxford (1987)

    Google Scholar 

  3. Stanukovich, K.P.: Unsteady Motion of Continuous Media. Pergamon Press, Oxford (1960)

    Google Scholar 

  4. Chester, W.: The quasi-cylindrical shock tube. Philos. Mag. 45(371), 1293–1301 (1954)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chisnell, R.F.: The motion of shock wave in a channel with applications to cylindrical and spherical shock waves. J. Fluid Mech. 2(3), 286–298 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  6. Whitham, G.B.: On the propagation of shock waves through regions of non-uniform area or flow. J. Fluid Mech. 4, 337–360 (1958)

    Article  MathSciNet  MATH  Google Scholar 

  7. Whitham, G.B.: Linear and Nonlinear Waves. Wiley-Interscience, New York (2011)

    MATH  Google Scholar 

  8. Zel’dovich, Ya.B., Raizer, Yu.P.: Physics of Shock Waves and High Temperature Hydrodynamics Phenomena. Dover, New York (2002)

  9. Han, Z., Yin, X.: Shock Dynamics. Science Press, Beijing (1993)

    Book  MATH  Google Scholar 

  10. Lee, J.H.S.: The Gas Dynamics of Explosions. Cambridge University Press, New York (2016)

    Book  Google Scholar 

  11. Henshaw, W.D., Smyth, N.F., Schwendeman, D.W.: Numerical shock propagation using geometrical shock dynamics. J. Fluid Mech. 171, 519–545 (1986)

    Article  MATH  Google Scholar 

  12. Schwendeman, D.W.: A new numerical method for shock wave propagation using geometrical shock dynamics. Proc. R. Soc. Lond. A 441, 331–341 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  13. Best, J.P.: A generalisation of the theory of geometrical shock dynamics. Shock Waves 1, 251–273 (1991)

    Article  MATH  Google Scholar 

  14. Cates, J.E., Sturtevant, B.: Shock wave focusing using geometrical shock dynamics. Phys. Fluids 9, 3058–3068 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  15. Anand, R.K.: Shock dynamics of weak imploding cylindrical and spherical shock waves with non-ideal gas effects. Phys. Scr. 87, 065404 (2013)

    Article  Google Scholar 

  16. Ridoux, J., Lardjane, N., Gomez, T., Coulouvrat, F.: Revisiting geometrical shock dynamics for blast wave propagation in complex environment. AIP Conf. Proc. 1685, 090010 (2015)

    Article  Google Scholar 

  17. Mie, G.: Zur kinetischen Theorie der einatomigen Korper. Ann. Phys. 316(8), 657–697 (1903)

    Article  MATH  Google Scholar 

  18. Grüneisen, E.: Theorie des festen Zustandes einatomiger Elemente. Ann. Phys. 344(12), 257–306 (1912)

    Article  MATH  Google Scholar 

  19. Walsh, J.M., Rice, M.H., McQueen, R.G., Yarger, E.L.: Shock-wave compressions of twenty-seven metals: equations of state of metals. Phys. Rev. 108, 196–216 (1957)

    Article  Google Scholar 

  20. Yadav, H.S., Singh, V.P.: Converging shock waves in metals. Pramana 18, 331–338 (1982)

    Article  Google Scholar 

  21. Ramsey, S.D., Schmidt, E.M., Boyd, Z.M., Lilieholm, J.F., Baty, R.S.: Converging shock flows for a Mie–Gruneisen equation of state. Phys. Fluids 30, 046101 (2018)

    Article  Google Scholar 

  22. Boyd, Z.M., Ramsey, S.D., Baty, R.S.: On the existence of self-similar converging shocks in non-ideal materials. Q. J. Mech. Appl. Math. 70, 401–417 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  23. Lieberthal, B., Stewart, D.S., Hernàndez, A.: Geometrical shock dynamics applied to condensed phase materials. J. Fluid Mech. 828, 104–134 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  24. Kanel, G.I., Razorenov, S.V., Fortov, V.E.: Shock -Wave Phenomena and the Properties of Condensed Matter. Springer, New York (2004)

    Book  Google Scholar 

  25. Davison, L., Shahinpoor, M.: High-Pressure Shock Compression of Solids III. Springer, New York (1998)

    Book  Google Scholar 

  26. Graham, R.A.: Solids Under High-Pressure Shock Compression: Mechanics, Physics and Chemistry. Springer-Verlag, New York (1993)

    Book  Google Scholar 

  27. Asay, J.R., Shahinpoor, M.: High-Pressure Shock Compression of Solids. Springer-Verlag, New York (1993)

    Book  MATH  Google Scholar 

  28. Hiroe, T., Matsuo, H., Fujiwara, K.: Numerical simulation of cylindrical converging shocks in solids. J. Appl. Phys. 72, 2605–2611 (1992)

    Article  Google Scholar 

  29. Nagayama, K., Murakami, T.: Numerical analysis of converging shock waves in concentric solid layer. J. Phys. Soc. Jpn. 40, 1479–1486 (1976)

    Article  Google Scholar 

  30. López Ortega, A., Lombardini, A.M., Hill, D.J.: Converging shocks in elastic–plastic solids. Phys. Rev. E 84, 056307 (2011)

    Article  Google Scholar 

  31. Hill, D.J., Pullin, D.I., Ortiz, M., Meiron, D.I.: An Eulerian hybrid WENO centered-difference solver for elastic–plastic solids. J. Comput. Phys. 229, 9053–9072 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  32. Menikoff, R.: Elastic–plastic shock waves. In: Horie, Y. (ed.) Shock Wave Science and Technology Reference Library, Solids I, vol. 2. Springer, New York (2007)

    Google Scholar 

  33. Meyers, M.A.: Dynamic Behavior of Materials. Wiley, New York (1994)

    Book  MATH  Google Scholar 

  34. Davison, L., Grady, D.E., Shahinpoor, M.: High-Pressure Shock Compression of Solids II: Dynamic Fracture and Fragmentation. Springer, New York (1996)

    Book  MATH  Google Scholar 

  35. Davison, L., Horie, Y., Shahinpoor, M.: High-Pressure Shock Compression of Solids IV Response of Highly Porous Solids to Shock Loading. Springer, New York (1997)

    Book  Google Scholar 

  36. Nagayama, K., Murakami, T.: Approximate theory of a converging shock wave in condensed media. J. Phys. Soc. Jpn. 41, 359–360 (1976)

    Article  Google Scholar 

  37. Hornung, H.G., Pullin, D.I., Ponchaut, N.F.: On the question of universality of imploding shock waves. Acta Mech. 201, 31–35 (2008)

    Article  MATH  Google Scholar 

  38. Schwendeman, D.W., Whitham, G.B.: On converging shock waves. Proc. R. Soc. Lond. A 413, 297–311 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  39. Courant, R., Friedrichs, K.O.: Supersonic Flow and Shock Waves. Springer, New York (1948)

    MATH  Google Scholar 

  40. Harris, P., Avrami, L.: Some physics of the Grüneisen parameter. Technical report No. 4423. Dover, New Jersey (1972)

  41. Ben-Dor, G.G., Igra, O., Elperin, T.: Handbook of Shock Waves. Academic Press, New York (2000)

    MATH  Google Scholar 

  42. Bushman, A.V., Fortov, V.E.: Model equation of state. Sov. Phys.-USPEKHI 26, 465–496 (1983)

    Article  Google Scholar 

  43. Anisimov, S.I., Kravchenko, V.A.: Shock wave in condensed matter generated by impulsive load. Z. Naturforsch. 40a, 8–13 (1985)

    Article  Google Scholar 

  44. Steinberg, D.J.: Equation of State and Strength Properties of Selected Materials: Report UCRL-MA-106439. Lawrence Livermore National Laboratory, Livermore, CA (1996)

    Google Scholar 

Download references

Acknowledgements

I am very thankful to Prof. Santosh Kumar for discussion. I acknowledge the support and encouragement of my family members.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. K. Anand.

Ethics declarations

Conflict of interest

The author declares that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anand, R.K. On the shock dynamics of weak converging shock waves in solid materials. Ricerche mat 71, 511–527 (2022). https://doi.org/10.1007/s11587-020-00545-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11587-020-00545-1

Keywords

Mathematics Subject Classification

Navigation