Skip to main content
Log in

A note on Alberti’s Luzin-type theorem for gradients

  • Published:
Ricerche di Matematica Aims and scope Submit manuscript

Abstract

We give a “soft” proof of Alberti’s Luzin-type theorem in Alberti (J Funct Anal 100:110–118, 1991), using elementary geometric measure theory and topology. Applications to the \(C^2\)-rectifiability problem are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alberti, G.: A Lusin-type theorem for gradients. J. Funct. Anal. 100, 110–118 (1991)

    Article  MathSciNet  Google Scholar 

  2. Anzellotti, G., Serapioni, R.: \(\mathscr {C}^k\)-rectifiable sets. J. Reine Angew. Math. 8, 195–201 (1994)

    MATH  Google Scholar 

  3. Cairns, S.S.: Triangulation of the manifold of class one. Bull. Am. Math. Soc. 41, 549–552 (1935)

    Article  MathSciNet  Google Scholar 

  4. David, G.C.: Lusin-type theorems for Cheeger derivatives on metric measure spaces. Anal. Geom. Metr. Spaces 3, 296–312 (2015)

    MathSciNet  MATH  Google Scholar 

  5. Delladio, S.: The projection of a rectifiable Legendrian set is \(C^2\)-rectifiable: a simplified proof. Proc. R. Soc. Edinb. 133, 85–96 (2003)

    Article  Google Scholar 

  6. Delladio, S.: A result about \(C^3\)-rectifiability of Lipschitz curves. Pac. J. Math. 230, 257–270 (2007)

    Article  Google Scholar 

  7. Etnyre, J.B.: Introductory lectures on contact geometry. Proc. Symp. Pure Math. 71, 81–107 (2003)

    Article  MathSciNet  Google Scholar 

  8. Federer, H.: Geometric Measure Theory. Springer, New York (1969)

    MATH  Google Scholar 

  9. Federer, H.: The \((\phi; k)\)-rectifiable subsets of \(n\)-space. Trans. Am. Math. Soc. 62, 114–192 (1947)

    MathSciNet  MATH  Google Scholar 

  10. Francos, G.: The Luzin theorem for higher-order derivatives. Michigan Math. J. 61, 507–516 (2012)

    Article  MathSciNet  Google Scholar 

  11. Fu, J.H.G.: Some remarks on Legendrian rectifiable currents. Manuscr. Math. 97, 175–187 (1998)

    Article  MathSciNet  Google Scholar 

  12. Fu, J.H.G.: Erratum to: some remarks on Legendrian rectifiable currents. Manuscr. Math. 97, 397–401 (2004)

    Article  Google Scholar 

  13. Giaquinta, M., Modica, G., Soucek, J.: Cartesian Currents in the Calculus of Variations. I. Cartesian Currents. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics, vol. 37. Springer, Berlin (1998)

    MATH  Google Scholar 

  14. Giaquinta, M., Modica, G., Soucek, J.: Cartesian currents in the Calculus of Variations. II. Variational Integrals. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics, vol. 38. Springer, Berlin (1998)

    MATH  Google Scholar 

  15. Hatcher, A.: Algebraic Topology. Cambridge University Press, Cambridge (2002)

    MATH  Google Scholar 

  16. Luzin, N.: Sur la notion de l’intégrale. Ann. Mat. Pura Appl. 26, 77–129 (1917)

    Article  Google Scholar 

  17. Moonens, L., Pfeffer, W.F.: The multidimensional Luzin theorem. J. Math. Anal. Appl. 339, 746–752 (2008)

    Article  MathSciNet  Google Scholar 

  18. White, B.: A new proof of Federer’s structure theorem for \(k\)-dimensional subsets of \(\mathbb{R}^N\). J. Am. Math. Soc. 11, 693–701 (1998)

    Article  Google Scholar 

  19. Whitehead, J.H.C.: On \(C^1\)-complexes. Ann. Math. 41, 809–824 (1940)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

SL is indebted to Ulrich Menne for kind communication and comments on the higher-order rectifiability problem. We also thank Yuchen Wang for her help on typesetting.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siran Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S. A note on Alberti’s Luzin-type theorem for gradients. Ricerche mat 70, 479–488 (2021). https://doi.org/10.1007/s11587-020-00485-w

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11587-020-00485-w

Keywords

Mathematics Subject Classification

Navigation