Skip to main content
Log in

Density lower bound estimate for local minimizer of free interface problem with volume constraint

  • Published:
Ricerche di Matematica Aims and scope Submit manuscript

Abstract

We prove a density lower bound for some functionals involving bulk and interfacial energies. The bulk energies are convex functions with p-power growth not subjected to any further structure conditions. The interface \(\partial E\) is the boundary of a set \(E\subset \Omega \) such that \(|E|=d\) is prescribed. Then we get \(\mathcal {H}^{n-1}((\partial E{\setminus }\partial E^*)\cup \Omega )=0\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Alt, H.W., Caffarelli, L.A.: Existence and regularity for a minimum problem with free boundary. J. Reine Angew. Math. 325, 107–144 (1981)

    MathSciNet  MATH  Google Scholar 

  2. Ambrosio, L., Buttazzo, G.: An optimal design problem with perimeter penalization. Calc. Var. Part. Differ. Equ. 1, 55–69 (1993)

    Article  MathSciNet  Google Scholar 

  3. Ambrosio, L., Fusco, N., Pallara, D.: Functions of Bounded Variation and Free Discontinuity Problems. Oxford University Press, Oxford (2000)

    MATH  Google Scholar 

  4. Bombieri, E.: Regularity theory for almost minimal currents. Arch. Ration. Mech. Anal. 78, 99–130 (1982)

    Article  MathSciNet  Google Scholar 

  5. Carozza, M., Fonseca, I., Di Napoli, A.Passarelli: Regularity results for an optimal design problem with a volume constraint, ESAIM Control. Optim. Calc. Var. 20(2), 460–487 (2014)

    Article  MathSciNet  Google Scholar 

  6. David, G.: \(C^1\) —arcs for minimizers of the Mumford–Shah functional. SIAM J. Appl. Math. 56, 783–888 (1996)

    Article  MathSciNet  Google Scholar 

  7. De Philippis, G., Figalli, A.: A note on the dimension of the singular set in free interface problems. Differ. Integral Equ. 28(5/6), 523–536 (2015)

    MathSciNet  MATH  Google Scholar 

  8. Esposito, L., Fusco, N.: A remark on a free interface problem with volume constraint. J. Convex Anal. 18(2), 417–426 (2011)

    MathSciNet  MATH  Google Scholar 

  9. Fonseca, I., Fusco, N.: Regularity results for anisotropic image segmentation models. Ann. Sc. Norm. Super. Pisa 24, 463–499 (1997)

    MathSciNet  MATH  Google Scholar 

  10. Fonseca, I., Fusco, N., Leoni, G., Morini, M.: Equilibrium configurations of epitaxially strained crystalline films: existence and regularity results. Arch. Ration. Mech. Anal. 186, 477–537 (2007)

    Article  MathSciNet  Google Scholar 

  11. Fusco, N., Julin, V.: On the regularity of critical and minimal sets of a free interface problem. arXiv:1309.6810

  12. Giusti, E.: Direct Methods in the Calculus of Variations. World Scientific, River Edge, NJ (2003)

    Book  Google Scholar 

  13. Gurtin, M.: On phase transitions with bulk, interfacial, and boundary enwergy. Arch. Ration. Mech. Anal. 96, 243–264 (1986)

    Article  Google Scholar 

  14. Kristensen, J., Mingione, G.: The singular set of lipschitzian minima of multiple integrals. Arch. Ration. Mech. Anal. 184, 341–369 (2007)

    Article  MathSciNet  Google Scholar 

  15. Larsen, C.J.: Regularity of componrnts in optimal design problems with perimeter penalization. Calc. Var. Part. Differ. Equ. 16, 17–29 (2003)

    Article  Google Scholar 

  16. Li, H., Halsey, T., Lobkovsky, A.: Singular shape of a fluid drop in an electric or magnetic field. Europhys. Lett. 27, 575–580 (1994)

    Article  Google Scholar 

  17. Lin, F.H.: Variational problems with free interfaces. Calc. Var. Part. Differ. Equ. 1, 149–168 (1993)

    Article  MathSciNet  Google Scholar 

  18. Lin, F.H., Kohn, R.V.: Partial regularity for optimal design problems involving both bulk and surface energies. Chin. Ann. Math. 20B(2), 137–158 (1999)

    Article  MathSciNet  Google Scholar 

  19. Maddalena, F., Solimini, S.: Regularity properties of free discontinuity sets. Ann. Inst. H. Poincaré Anal. Non Lin éaire 18, 675–685 (2001)

    Article  MathSciNet  Google Scholar 

  20. Maggi, F.: Sets of Finite Perimeter and Geometric Variational Problems, Cambridge Studies in Advanced Mathematics, vol. 135. Cambridge Univeristy Press, Cambridge (2012)

    Book  Google Scholar 

  21. Simon, L.: Lectures on geometric measure theory. In: Proceedings of the centre for mathematical analysis, Australian National University, centre for mathematical analysis, vol. 3, Canberra (1983)

  22. Ŝverák, V., Yan, X.: Non-Lipschitz minimizers of smooth uniformly convex variational integrals. Proc. Natl. Acad. Sci. USA 99, 15269–15276 (2002)

    Article  MathSciNet  Google Scholar 

  23. Tamanini, I.: Boundaries of Caccioppoli sets with Hölder-continuous normal vector. J. Reine Angew. Math. 334, 27–39 (1982)

    MathSciNet  MATH  Google Scholar 

  24. Taylor, G.I.: Disintegration of water drops in an electric field. Proc. R. Soc. Lond. A 280, 383–397 (1964)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca Esposito.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Esposito, L. Density lower bound estimate for local minimizer of free interface problem with volume constraint. Ricerche mat 68, 359–373 (2019). https://doi.org/10.1007/s11587-018-0407-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11587-018-0407-7

Keywords

Mathematics Subject Classification

Navigation