Skip to main content
Log in

Harnack’s principle for quasiminimizers

  • Published:
Ricerche di Matematica Aims and scope Submit manuscript

Abstract

We study Harnack type properties of quasiminimizers of the \(p\mspace{1mu}\)-Dirichlet integral on metric measure spaces equipped with a doubling measure and supporting a Poincaré inequality. We show that an increasing sequence of quasiminimizers converges locally uniformly to a quasiminimizer, provided the limit function is finite at some point, even if the quasiminimizing constant and the boundary values are allowed to vary in a bounded way. If the quasiminimizing constants converge to one, then the limit function is the unique minimizer of the \(p\mspace{1mu}\)-Dirichlet integral. In the Euclidean case with the Lebesgue measure we obtain convergence also in the Sobolev norm.

Keywords: Metric space, doubling measure, Poincaré inequality, Newtonian space, Harnack inequality, Harnack convergence theorem

Mathematics Subject Classification (2000): 49J52, 35J60, 49J27

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • 1. Björn, A.: A weak Kellogg property for quasiminimizers. Comment. Math. Helv. 81, 809–825 (2006)

    Google Scholar 

  • 2. Björn, A., Björn, J.: Boundary regularity for p-harmonic functions and solutions of the obstacle problem. Preprint, Linköping University (2004)

  • 3. Björn, A., Björn, J., Shanmugalingam, N.: Quasicontinuity of Newton–Sobolev functions and density of Lipschitz functions on metric spaces. Preprint, Linköping University (2006)

  • 4. Björn, A., Marola, N.: Moser iteration for (quasi)minimizers on metric spaces. To appear in Manuscripta Math.

  • 5. Björn, J.: Boundary continuity for quasiminimizers on metric spaces. Illinois J. Math. 46, 383–403 (2002)

    Google Scholar 

  • 6. Cheeger, J.: Differentiability of Lipschitz functions on metric measure spaces. Geom. Funct. Anal. 9, 428–517 (1999)

    Google Scholar 

  • 7. DiBenedetto, E., Trudinger, N.S.: Harnack inequality for quasi-minima of variational integrals. Annales de l'Institut H. Poincaré: Analyse Nonlinéaire 1, 295–308 (1984)

    Google Scholar 

  • 8. Giaquinta, M., Giusti E.: On the regularity of the minima of variational integrals. Acta Math. 148, 31–46 (1982)

    Google Scholar 

  • 9. Giaquinta, M., Giusti E.: Quasi-minima. Ann. Inst. H. Poincaré Anal. Non Linéaire 1, 79–107 (1984)

  • 10. Heinonen, J.: Lectures on Analysis on Metric Spaces. Springer-Verlag, New York (2001)

  • 11. Heinonen, J., Kilpeläinen, T., Martio, O.: Nonlinear Potential Theory of Degenerate Elliptic Equations. Oxford University Press, Oxford (1993)

  • 12. Hewitt, E., Stromberg, K.: Real and Abstract Analysis. Springer-Verlag, Berlin-Heidelberg (1965)

  • 13. Holopainen, I., Lang, U., Vähäkangas, A.: Dirichlet problem at infinity on Gromov hyperbolic metric measure spaces. Preprint, University of Helsinki (2005)

  • 14. Keith, S., Zhong, X.: The Poincaré inequality is an open ended condition. Preprint, University of Jyväskylä (2003)

  • 15. Kilpeläinen, T., Kinnunen, J., Martio, O.: Sobolev spaces with zero boundary values on metric spaces. Potential Anal. 12, 233–247 (2000)

    Google Scholar 

  • 16. Kinnunen, J., Martio, O.: The Sobolev capacity on metric spaces. Ann. Acad. Sci. Fenn. Math. 21, 367–382 (1996)

    Google Scholar 

  • 17. Kinnunen, J., Martio, O.: Choquet property for the Sobolev capacity in metric spaces. In: Proceedings on Analysis and Geometry, Novosibirsk, Akademgorodok, 1999, 285–290. Izdat. Ross. Akad. Nauk Sib. Otd. Inst. Mat., Novosibirsk (2000)

  • 18. Kinnunen, J., Martio, O.: Nonlinear potential theory on metric spaces. Illinois Math. J. 46, 857–883 (2002)

    Google Scholar 

  • 19. Kinnunen, J., Martio, O.: Potential theory of quasiminimizers. Ann. Acad. Sci. Fenn. Math. 28, 459–490 (2003)

    Google Scholar 

  • 20. Kinnunen, J., Shanmugalingam, N.: Regularity of quasi-minimizers on metric spaces. Manuscripta Math. 105, 401–423 (2001)

    Google Scholar 

  • 21. Latvala, V.: BMO-invariance of quasiminimizers. Ann. Acad. Sci. Fenn. Math. 29, 407–418 (2004)

    Google Scholar 

  • 22. Marola, N.: Moser's method for minimizers on metric measure spaces. Preprint, Helsinki University of Technology, Institute of Mathematics (2004)

  • 23. Shanmugalingam, N.: Newtonian spaces: An extension of Sobolev spaces to metric measure spaces. Rev. Mat. Iberoamericana 16, 243–279 (2000)

    Google Scholar 

  • 24. Shanmugalingam, N.: Harmonic functions on metric spaces. Illinois J. Math. 45, 1021–1050 (2001)

    Google Scholar 

  • 25. Shanmugalingam, N.: Some convergence results for p-harmonic functions on metric measure spaces. Proc. London Math. Soc. 87, 226–246 (2003)

    Google Scholar 

  • 26. Tolksdorf, P.: Remarks on quasi(sub)minima. Nonlinear Anal. 10, 115–120 (1986)

    Google Scholar 

  • 27. Ziemer, W.P.: Boundary regularity for quasiminima. Arch. Rational Mech. Anal. 92, 371–382 (1986)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kinnunen, J., Marola, N. & Martio, O. Harnack’s principle for quasiminimizers. Ricerche mat. 56, 73–88 (2007). https://doi.org/10.1007/s11587-007-0006-5

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11587-007-0006-5

Keywords

Navigation