Skip to main content
Log in

The chemically deposited Sn combines with the TiO2 3D reticular structure to form a stable and uniform lithium metal anode

  • Research
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Lithium metal anode is one of the ideal anodes with high energy density. However, the problems of lithium dendrite growth and infinite volume expansion lead to safety and cycling stability problems in lithium metal anode batteries, which became the biggest obstacle to the commercial application of lithium metal anodes. This paper reports a three-dimensional nanostructured TiO2 flexible lithium metal anode scaffold loaded with Sn. Three-dimensional nanostructured TiO2 has a high specific surface area that can accommodate lithium deposition with high capacity while suppressing lithium dendrite growth. At a current density of 1 mA cm−2 and a deposition volume of 5 mAh cm−2, the 35th circulate coulomb efficiency of the lithium metal anode scaffold is still 98%. The nano-Sn metal with better pro-lithium properties loaded on the lithium metal anode scaffold composed of TiO2 skeleton, which can sufficiently reduce the nucleation potential barrier of Li+ and enable the uniform deposition of lithium on the support, assembled into a full coin cell using a LiFeO4 (LFP)-based positive electrode exhibit high-capacity retention and high energy density (443 Wh kg−1) after 200 cycles at 1C (= 170 mA g−1).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding authors.

References

  1. Mu T, Lu H, Ren Y (2022) Interface defect chemistry enables dendrite-free lithium metal anodes. Chem Eng J 437:135109

    Article  CAS  Google Scholar 

  2. Han Y, Liu B, Xiao Z (2021) Interface issues of lithium metal anode for high-energy batteries: challenges, strategies, and perspectives. InfoMat 3:155–174

    Article  CAS  Google Scholar 

  3. Zhang R, Shen X, Zhang YT (2022) Dead lithium formation in lithium metal batteries: a phase field model. J Energy Chem 71:29–35

    Article  CAS  Google Scholar 

  4. Cao W, Li Q, Yu X (2022) Controlling Li deposition below the interface. eScience 2:47–78

    Article  Google Scholar 

  5. Chen XR, Yan C, Ding JF (2021) New insights into “dead lithium” during stripping in lithium metal batteries. J Energy Chem 62:289–294

    Article  CAS  Google Scholar 

  6. Xu W, Wang J, Ding F (2014) Lithium metal anodes for rechargeable batteries. Energy Environ Sci 7:513–537

    Article  CAS  Google Scholar 

  7. He Y, Ren X, Xu Y (2019) Origin of lithium whisker formation and growth under stress. Nat Nanotechnol 14:1042–1047

    Article  CAS  PubMed  Google Scholar 

  8. Lu Y, Lu Y, Jin C (2021) Natural wood structure inspires practical lithium–metal batteries. ACS Energy Lett 6:2103–2110

    Article  CAS  Google Scholar 

  9. Jiang Z, Jin L, Han Z (2019) Facile generation of polymer–alloy hybrid layers for dendrite-free lithium-metal anodes with improved moisture stability. Angew Chem Int Ed 58(33):11374–11378

    Article  CAS  Google Scholar 

  10. Zhang Z, Huang Y, Li C (2021) Metal–organic framework-supported poly(ethylene oxide) composite gel polymer electrolytes for high-performance lithium/sodium metal batteries. ACS Appl Mater Interfaces 13:37262–37272

    Article  CAS  PubMed  Google Scholar 

  11. Chang S, Jin X, He Q (2022) In situ formation of polycyclic aromatic hydrocarbons as an artificial hybrid layer for lithium metal anodes. Nano Lett 22:263–270

    Article  CAS  PubMed  Google Scholar 

  12. Yang CP, Yin YX, Zhang SF (2015) Accommodating lithium into 3D current collectors with a submicron skeleton towards long-life lithium metal anodes. Nat Commun 6:8058

    Article  CAS  PubMed  Google Scholar 

  13. Ni C, Mao J, Cheng Z (2021) Si/ZnO framework: 3D lithiophilic structure for dendrite-free lithium metal batteries. J Alloys Compd 876:160188

    Article  CAS  Google Scholar 

  14. Luo KL, Leng ZY, Li ZD (2022) Stable Li metal anode in a lithiophilic shuttle. Nanoscale 14:3935–3945

    Article  CAS  PubMed  Google Scholar 

  15. Zuo ZF, Zhuang LB, Xu JZ (2020) Lithiophilic silver coating on lithium metal surface for inhibiting lithium dendrites. Front Chem 8:109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yan J, Ye M, Zhang Y (2022) Graphene enabled electric-field regulation and ionic redistribution around lithiophilic aurum nanoparticles toward a dendrite-free and 2000-cycle-life lithium metal battery. Chem Eur J 28:e202201151

    Article  CAS  PubMed  Google Scholar 

  17. Wang CH, Deng T, Fan XL (2022) Identifying soft breakdown in all-solid-state lithium battery. Joule 6(8):1770–1781

    Article  CAS  Google Scholar 

  18. Mancini M, Kubiak P, Wohlahrt-mehrens M (2010) Mesoporous anatase TiO2 electrodes modified by metal deposition: electrochemical characterization and high rate performances. J Electrochem Soc 157:A164–A170

    Article  CAS  Google Scholar 

  19. K, Hemalatha, AS, Prakash, K, Guruprakash, M, Jayakumar (2010) TiO2 coated carbon nanotubes for electrochemical energy storage. J Mater Chem A 26:1757–1766

  20. Kim HS, Yu SH, Cho YH (2014) TiO2-core/Sn-shell nanotube arrays based on monolithic negative electrode for Li-ion batteries. Electrochim Acta 130:600–605

    Article  CAS  Google Scholar 

  21. Knvan L, Kalbac M, Zukalova M (2004) Lithium storage in nanostructured TiO2 made by hydrothermal growth. Chem Mater 16:477–485

    Article  Google Scholar 

  22. Bresser D, Paillard E, Binetti E (2012) Percolating networks of TiO2 nanorods and carbon for high power lithium insertion electrodes. J Power Sources 206:301–309

    Article  CAS  Google Scholar 

  23. Brumbariv J, Vivek JP, Leonardi S (2015) Correction: oxygen deficient, carbon coated self-organized TiO2 nanotubes as anode material for Li-ion intercalation. J Mater Chem A 3:24569

    Article  Google Scholar 

  24. Wu Q, Xu J, Yang X (2015) Ultrathin anatase TiO2 nanosheets embedded with TiO2-B nanodomains for lithium-ion storage: capacity enhancement by phase boundaries. Adv Energy Mater 5:1401756

    Article  Google Scholar 

  25. Wei L, Deng N, Ju J (2022) A review on nanofiber materials for lithium-metal batteries to suppress the dendritic lithium growth. Chem Eng J 433:134392

    Article  CAS  Google Scholar 

  26. Fang S, Shen L, Hoefling A (2021) A mismatch electrical conductivity skeleton enables dendrite–free and high stability lithium metal anode. Nano Energy 89:106421

    Article  CAS  Google Scholar 

  27. Wang M, Tan Q, Liu L (2019) Efficient separation of aluminum foil and cathode materials from spent lithium-ion batteries using a low-temperature molten salt. ACS Sustain Chem Eng 7:8287–8294

    Article  CAS  Google Scholar 

  28. Yi J, Chen J, Yang Z (2019) Facile patterning of laser-induced graphene with tailored Li nucleation kinetics for stable lithium-metal batteries. Adv Energy Mater 9:1901796

    Article  CAS  Google Scholar 

  29. Chen L, Fan X, Ji X (2019) High-energy Li metal battery with lithiated host. Joule 3:732–744

    Article  CAS  Google Scholar 

  30. Cheng XB, Zhang R, Zhao CZ (2017) Toward safe lithium metal anode in rechargeable batteries: a review. Chem Rev 117:10403–10473

    Article  CAS  PubMed  Google Scholar 

  31. Zhang Z, Luo H, Liu Z (2022) A chemical lithiation induced Li4.4Sn lithiophilic layer for anode-free lithium metal batteries. J Mater Chem A 10:9670–9679

    Article  CAS  Google Scholar 

  32. Zhao Y, Yang X, Sun Q (2018) Dendrite-free and minimum volume change Li metal anode achieved by three-dimensional artificial interlayers. Energy Stor Mater 15:415–421

    Google Scholar 

  33. Yun XY, Wang WW, Wang QC (2018) CoO nanofiber decorated nickel foams as lithium dendrite suppressing host skeletons for high energy lithium metal batteries. Energy Stor Mater 14:335–344

    Google Scholar 

  34. Wang Y, Zheng H, Hong L (2022) Lithium difluoro(bisoxalato) phosphate-based multi-salt low concentration electrolytes for wide-temperature lithium metal batteries: experiments and theoretical calculations. Chem Eng J 445:136802

    Article  CAS  Google Scholar 

  35. Ding F, Xu W, Graff GL (2013) Dendrite-free lithium deposition via self-healing electrostatic shield mechanism. J Am Chem Soc 135:4450–4456

    Article  CAS  PubMed  Google Scholar 

  36. Zhou SY, Chen WX (2022) Efficient diffusion of superdense lithium via atomic channels for dendrite-free lithium-metal batteries. Energy Environ Sci 15:196–205

  37. Chen T, Jian S, Xing J (2021) Self-formed lithiophilic alloy buffer layer on copper foam framework for advanced lithium metal anodes. ACS Appl Energy Mater 4:4879–4886

    Article  CAS  Google Scholar 

  38. Huang MS, Yao ZG, Yang QF, Li CL (2021) Consecutive nucleation and confinement modulation towards Li plating in seeded capsules for durable Li-metal batteries. Angew Chem Int Ed 60:14040–14050

    Article  CAS  Google Scholar 

  39. Yang QF, Cui MN, Hu JL, Chu FL, Zheng YJ, Liu JJ, Li CL (2020) Ultrathin defective C-N coating to enable nanostructured Li plating for Li metal batteries. ACS Nano 14:1866–1878

    Article  CAS  PubMed  Google Scholar 

  40. Wu CL, Hu JL, Yang QF, Lei M, Yu YF, Li CL (2023) Open framework perovskite derivate SEI with fluorinated heterogeneous nanodomains for practical Li-metal pouch cells. Nano Energy 113:2211–2855

    Article  Google Scholar 

Download references

Funding

This work was supported by Yunnan Major Scientific and Technological Projects (grant no. 202202AG050003); the Natural Science Foundation of Yunnan Province (grant no. 202101AW070006); the Yunnan Fundamental Research Projects (grant no. 202101BE070001-018, 202201AT070070).

Author information

Authors and Affiliations

Authors

Contributions

Bingnan Deng: conceptualization and writing—original draft. Rongwei Huang: writing—review and editing. Dan You: writing—review and editing. Wenhao Yang: writing—review and editing. Jiyue Hou: conceptualization and writing—review. Ao Li: conceptualization and writing—review. Dong Yang: conceptualization and writing—review. Fei Wang: conceptualization and writing—review. Xue Li: writing—review and editing and funding acquisition. Yiyong Zhang: writing—review and editing and funding acquisition.

Corresponding authors

Correspondence to Xue Li or Yiyong Zhang.

Ethics declarations

Ethical approval

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, B., Huang, R., You, D. et al. The chemically deposited Sn combines with the TiO2 3D reticular structure to form a stable and uniform lithium metal anode. Ionics (2024). https://doi.org/10.1007/s11581-024-05474-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11581-024-05474-9

Keywords

Navigation