Skip to main content
Log in

Nitrogen-doped carbon nanorods embedded with cobalt nanoparticles as separator coatings for high-performance lithium-sulfur batteries

  • Research
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Lithium-sulfur batteries (LSBs) have a high theoretical specific capacity (1675 mAh/g) and are expected to replace lithium-ion batteries as a new generation of high-density energy storage devices. However, the existence of problems such as the “shuttle effect” causes an irreversible loss of LSB capacity. In view of this, carbon nanorods embedded with cobalt nanoparticles (Co-CNRs-CTAB) were successfully prepared through the high-temperature pyrolysis of prism-shaped polypyrrole loaded with zeolitic imidazolate framework-67 under the assistance of cetyltrimethylammonium bromide (CTAB), applied as commercial polypropylene (PP) separator modifiers to promote the rapid capture and redox conversion of soluble polysulfides for upgrading LSBs. The results show that the LSBs assembled with modified Co-CNRs-CTAB/PP separator have amazing electrochemical performance, involving a high initial mass specific capacity of 1091.8 mAh/g (1 C) and excellent cycling stability (594.7 mAh/g after 300 cycles at 3 C). Even at − 10 °C, the capacity attenuation of the LSBs per cycle is only 0.05% after 150 cycles. Therefore, this work provides an operationally simple and low-cost solution for improving the cycle life of LSBs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

No datasets were generated or analysed during the current study.

References

  1. Song R, He J, Zhang C et al (2023) Multifunctional 3D multilayer cross-linked CNF-CNT interlayer for kinetically accelerated polysulfide trapping and conversion in lithium−sulfur batteries. J Solid State Electr 27:2395–2406

    Article  CAS  Google Scholar 

  2. Umeshbabu E, Zheng B, Yang Y (2019) Recent progress in all-solid-state lithium−sulfur batteries using high Li-ion conductive solid electrolytes. Electrochem Energy R 2:199–230

    Article  CAS  Google Scholar 

  3. Wang T, He J, Cheng X-B et al (2022) Strategies toward high-loading lithium–sulfur batteries. ACS Energy Lett 8:116–150

    Article  Google Scholar 

  4. Wu N, Wang J, Liao C et al (2022) A flame retardant separator modified by MOFs-derived hybrid for safe and efficient Li-S batteries. J Energy Chem 64:372–384

    Article  CAS  Google Scholar 

  5. Guo J, Xu Y, Wang C (2011) Sulfur-impregnated disordered carbon nanotubes cathode for lithium–sulfur batteries. Nano Lett 11:4288–4294

    Article  ADS  PubMed  CAS  Google Scholar 

  6. Wu K, Hu Y, Shen Z et al (2018) Highly efficient and green fabrication of a modified C nanofiber interlayer for high-performance Li–S batteries. J Mater Chem A 6:2693–2699

    Article  CAS  Google Scholar 

  7. Huang J-Q, Zhuang T-Z, Zhang Q et al (2015) Permselective graphene oxide membrane for highly stable and anti-self-discharge lithium–sulfur batteries. ACS Nano 9:3002–3011

    Article  PubMed  CAS  Google Scholar 

  8. Su W, Feng W, Zhao Z et al (2023) MoWS2 promoted lithium polysulfide conversion for high-performance lithium-sulfur battery. Solid State Ionics 402:116376

    Article  CAS  Google Scholar 

  9. Wang N, Zhang X, Ju Z et al (2021) Thickness-independent scalable high-performance Li-S batteries with high areal sulfur loading via electron-enriched carbon framework. Nat Commun 12:4519

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  10. Zhu Y, Zhang Y, Jin S et al (2023) Toward safe and high-performance lithium–sulfur batteries via polyimide nanosheets-modified separator. ACS Sustain Chem Eng 11:1434–1447

    Article  CAS  Google Scholar 

  11. Jiang Y, Yang R, Liu Z et al (2024) Homogenous conduction: stable multifunctional gel polymer electrolyte for lithium-sulfur batteries. Colloids Surf A 680:132732

    Article  CAS  Google Scholar 

  12. Zhang C, He Y, Wang Y et al (2021) CoFe2O4 nanoparticles loaded N-doped carbon nanofibers networks as electrocatalyst for enhancing redox kinetics in Li-S batteries. Appl Surf Sci 560:149908

    Article  CAS  Google Scholar 

  13. Yao S, Zhang T, Ma C et al (2024) Comparative study of the electrochemical performances of different polyolefin separators in lithium/sulfur batteries. Mater Res Bull 171:112604

    Article  CAS  Google Scholar 

  14. Zhu F, Liu J, Zhao H et al (2019) Preparation and performance of porous polyetherimide/Al2O3 separator for enhanced lithium-sulfur batteries. ChemElectroChem 6:2883–2890

    Article  CAS  Google Scholar 

  15. Guo D, Ming F, Su H et al (2019) MXene based self-assembled cathode and antifouling separator for high-rate and dendrite-inhibited Li–S battery. Nano Energy 61:478–485

    Article  CAS  Google Scholar 

  16. Song C-L, Li G-H, Yang Y et al (2020) 3D catalytic MOF-based nanocomposite as separator coatings for high-performance Li-S battery. Chem Eng J 381:122701

    Article  ADS  CAS  Google Scholar 

  17. Zuo X, Zhen M, Wang C (2019) Ni@N-doped graphene nanosheets and CNTs hybrids modified separator as efficient polysulfide barrier for high-performance lithium sulfur batteries. Nano Res 12:829–836

    Article  CAS  Google Scholar 

  18. Wang J, Cai W, Mu X et al (2021) Designing of multifunctional and flame retardant separator towards safer high-performance lithium-sulfur batteries. Nano Res 14:4865–4877

    Article  ADS  CAS  Google Scholar 

  19. Zhu Y, Wang J, Wang Y et al (2022) A one-step deposition method to prepare separators with carbon soot loading for lithium-sulfur battery. Ionics 28:1693–1700

    Article  CAS  Google Scholar 

  20. Balach J, Jaumann T, Klose M et al (2015) Functional mesoporous carbon-coated separator for long-life, high-energy lithium–sulfur batteries. Adv Funct Mater 25:5285–5291

    Article  CAS  Google Scholar 

  21. Shen C, Li Y, Gong M et al (2021) Ultrathin cobalt phthalocyanine@graphene oxide layer-modified separator for stable lithium–sulfur batteries. ACS Appl Mater Inter 13:60046–60053

    Article  CAS  Google Scholar 

  22. Qiu Y, Li W, Zhao W et al (2014) High-rate, ultralong cycle-life lithium/sulfur batteries enabled by nitrogen-doped graphene. Nano Lett 14:4821–4827

    Article  ADS  PubMed  CAS  Google Scholar 

  23. Chung S-H, Manthiram A (2014) High-performance Li–S batteries with an ultra-lightweight MWCNT-coated separator. J Phys Chem Lett 5:1978–1983

    Article  PubMed  CAS  Google Scholar 

  24. Guangmin Z, Songfeng et al (2014) A graphene–pure-sulfur sandwich structure for ultrafast, long-life lithium–sulfur batteries. Adv Mater 26:625–631

    Article  Google Scholar 

  25. Ji X, Lee KT, Nazar LF (2009) A highly ordered nanostructured carbon–sulphur cathode for lithium–sulphur batteries. Nat Mater 8:500–506

    Article  ADS  PubMed  CAS  Google Scholar 

  26. Chung SH, Manthiram A (2014) Bifunctional separator with a light-weight carbon-coating for dynamically and statically stable lithium-sulfur batteries. Adv Funct Mater 24:5299–5306

    Article  CAS  Google Scholar 

  27. Zhao Z, Li H, Cheng X (2021) Multifunctional FeP/spongy carbon modified separator with enhanced polysulfide immobilization and conversion for flame-retardant lithium-sulfur batteries. Chem Select 6:7098–7102

    CAS  Google Scholar 

  28. Zhang K, Jin L, Chen J et al (2024) Ketjen Black@Ce-MOF derived KB@CeO2-C as separator coating for lithium sulfur batteries. J Energy Storage 78:110006

    Article  Google Scholar 

  29. Li W, Yang B, Pang R et al (2023) Polysulfide and li dendrite-blocking aramid nanofiber/metal–organic framework composite separators for advanced lithium–sulfur batteries. ACS Appl Nano Mater 6:1059–1071

    Article  CAS  Google Scholar 

  30. Hong XJ, Song CL, Yang Y et al (2019) Cerium based metal-organic frameworks as an efficient separator coating catalyzing the conversion of polysulfides for high performance lithium-sulfur batteries. ACS Nano 13:1923–1931

    PubMed  CAS  Google Scholar 

  31. Wang Z, Wang H, Zeng Z et al (2020) Metal-organic frameworks derived Bi2O2CO3/porous carbon nitride: a nanosized z-scheme systems with enhanced photocatalytic activity. Appl Catal B 267:118700

    Article  CAS  Google Scholar 

  32. Li Z, Sun Y, Wu X et al (2022) Boosting adsorption and catalysis of polysulfides by multifunctional separator for lithium–sulfur batteries. ACS Energy Lett 7:4190–4197

    Article  ADS  CAS  Google Scholar 

  33. Zhongsheng G (2021) Preparation of conductive polymer matrix and its composites and their applications in superacpacitors. [D]. Qilu University of Technology. https://doi.org/10.27278/d.cnki.gsdqc.2021.000223

  34. Gu S, Xu S, Song X et al (2022) Electrostatic potential-induced Co–N4 active centers in a 2D conductive metal–organic framework for high-performance lithium–sulfur batteries. ACS Appl Mater Inter 14:50815–50826

    Article  CAS  Google Scholar 

  35. Zhang Z, Chen C, Xu J et al (2022) Nanoporous cobalt–nitrogen–carbon catalyst-based multifunctional interlayer for enhanced Li–S battery performance. ACS Appl Energ Mater 5:4691–4697

    Article  CAS  Google Scholar 

  36. Lin ZH, Li X, Song YF et al (2022) Highly graphitized porous carbon microspheres derived from copolymer of glucose and melamine for advanced electrodes. Part Part Syst Char 39:2200055

    Article  CAS  Google Scholar 

  37. Gao Z, Zhang J, Mu T et al (2022) CTAB-assisted one-pot hydrothermal synthesis of Co085Se as a promising cathode material for magnesium ion battery. Mater Lett 328:133066

    Article  CAS  Google Scholar 

  38. Xu CY, Du R, Yu CB et al (2022) Glucose-derived micro-mesoporous carbon spheres for high-performance lithium-sulfur batteries. Energy Fuels 37:1318–1326

    Article  Google Scholar 

  39. Zang Y, Pei F, Huang JH et al (2018) Large-area preparation of crack-free crystalline microporous conductive membrane to upgrade high energy lithium-sulfur batteries. Adv Energy Mater 8:1802052

    Article  Google Scholar 

  40. Wang Z, Cui C, Zhao Y et al (2023) VS4/MoS2 heterostructures grown along graphene to boost reaction kinetics and reversibility for high performance lithium-sulfur batteries. J Alloy Compd 967:171820

    Article  CAS  Google Scholar 

  41. Niu SQ, Hu CC, Liu YY et al (2021) Nanoporous Co and N-codoped carbon composite derived from ZIF-67 for high-performance lithium-sulfur batteries. Nanomaterials 11:1910

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  42. Huang S, Wang Y, Hu J et al (2019) In situ-grown compressed NiCo2S4 barrier layer for efficient and durable polysulfide entrapment. Npg Asia Mater 11:55

    Article  ADS  Google Scholar 

  43. Li Y, Lin S, Wang D et al (2020) Single atom array mimic on ultrathin MOF nanosheets boosts the safety and life of lithium–sulfur batteries. Adv Mater 32(8):1906722

    Article  CAS  Google Scholar 

  44. Liu P, Yang W, Xiao F et al (2021) Efficient anchoring of polysulfides based on self-assembled Ti3C2Tx nanosheet-connected hollow Co(OH)2 nanotubes for lithium–sulfur batteries. ACS Appl Mater Inter 13:57285–57293

    Article  ADS  CAS  Google Scholar 

  45. Liu Q, Han XT, Dou QY et al (2022) NiFe-layered double hydroxide nanosheets grafted onto carbon nanotubes for functional separator of lithium sulfur batteries. Int J Energ Res 46:9634–9642

    Article  CAS  Google Scholar 

  46. He H, Xue Q, Liu L et al (2023) Mott Schottky heterojunction Co/CoSe2 electrocatalyst: achieved rapid conversion of polysulfides and Li2S deposition dissolution via built-in electric field interface effect. Chem Eng J 475:146126

    Article  CAS  Google Scholar 

  47. Huang J, Dong SF (2022) Hierarchically porous titanium dioxide as efficient sulfur host for advanced lithium-sulfur batteries. Ionics 28:2775–2779

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported financially by the National Natural Science Foundation of China (NSFC) (22208174), the New Colleges and Universities Twenty Foundational Projects of Jinan City (2021GXRC068), the Universities Youth Innovation Team Development Plan of Shandong Province (2023KJ140), the Natural Science Foundation of Shandong Province (ZR2022MB143), the Basic Research Projects of Science, Education, and Industry Integration Pilot Engineering of Qilu University of Technology (Shandong Academy of Sciences) (2023PY002), the Talent Research Projects of Qilu University of Technology (Shandong Academy of Sciences) (2023RCKY013), the 2023 Graduate Education and Teaching Reform Projects of Qilu University of Technology (Shandong Academy of Sciences) (24231601010415), and the Major Innovation Projects for Integrating Science, Education, and Industry of Qilu University of Technology (Shandong Academy of Sciences) (2022JBZ01-07).

Author information

Authors and Affiliations

Authors

Contributions

H. Y. drafted the work and revised it critically for important intellectual content; Y. Z. made substantial contributions to the analysis of data; Y. L. and X. L. made substantial contributions to the acquisition of data; M. L.1 made substantial contributions to the interpretation of the data; J. C. made substantial contributions to manuscript revision and experimental analysis. M. L.2 and L. J. made substantial contributions to the conception and design of the work.

Corresponding authors

Correspondence to Yunqiang Zhang, Mei Li or Laiying Jing.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3002 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, H., Zhang, Y., Lu, Y. et al. Nitrogen-doped carbon nanorods embedded with cobalt nanoparticles as separator coatings for high-performance lithium-sulfur batteries. Ionics (2024). https://doi.org/10.1007/s11581-024-05471-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11581-024-05471-y

Keywords

Navigation