Skip to main content
Log in

Sulfur-encapsulated carbon templet as a structured cathode material for secondary sodium-sulfur battery

  • Research
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Sodium sulfur (Na-S) battery is an electrochemical energy stowage stratagem which has been labelled as a practicable aspirant for extensive grid-ion verve stowage structures. Na-S battery consumes a high energy concentration as well as a high thermodynamic efficiency of charge and discharge rotations. In this aspect, sulfur is a promising cathode material due to its capability of intercalating two electrons simultaneously in addition to its low cost and natural abundance. Due to the insulating nature of sulfur, a carbon matrix is introduced and encapsulates the sulfur. In this work, coconut carbon, rGO, and MWCNT acted as a various carbon matrix synthesized by the melt diffusion method. Further, physical and electrochemical studies have been investigated. Interestingly, S/rGO exhibits an initial discharge capacity of 965 mAhg-1 at 0.1C with a coulombic efficiency of 81%.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

No datasets were generated or analyzed during the current study.

References

  1. Daniel C, Mohanty D, Li J, Wood DL (2014) Cathode materials review. In AIP Conference Proceedings. Am Inst Phys 1597:26–43. https://doi.org/10.1063/1.4878478

    Article  ADS  CAS  Google Scholar 

  2. Daniel C (2008) Materials and processing for lithium-ion batteries. J Oper Manag 60:43–48. https://doi.org/10.1007/s11837-008-0116-x

    Article  CAS  Google Scholar 

  3. Goodenough JB, Park KS (2013) The Li-ion rechargeable battery: a perspective. J American Chem Soc 135(4):1167–1176. https://doi.org/10.1021/ja3091438

    Article  CAS  Google Scholar 

  4. Li Q, Rui X, Chen D, Feng Y, Xiao N, Gan L, Zhang Q, Yu Y, Huang S (2020) A high-capacity ammonium vanadate cathode for zinc-ion battery. Nanomicro Lett 12:1–12. https://doi.org/10.1007/s40820-020-0401-y

    Article  CAS  Google Scholar 

  5. Armand M, Tarascon JM (2008) Building better batteries. Nature 451(7179):652–657. https://doi.org/10.1038/451652a

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Rudola A, Saravanan K, Mason CW, Balaya P (2013) Na2Ti3O7: an intercalation-based anode for sodium-ion battery applications. J Mater Chem A 1(7):2653–2662. https://doi.org/10.1039/C2TA01057G

    Article  CAS  Google Scholar 

  7. Chawla N, Safa M (2019) Sodium batteries: a review on sodium-sulfur and sodium-air batteries. Electronics 8(10):1201. https://doi.org/10.3390/electronics8101201

    Article  CAS  Google Scholar 

  8. Li H, Peng L, Zhu Y, Chen D, Zhang X, Yu G (2016) An advanced high-energy sodium ion full battery based on nanostructured Na2Ti3O7/VOPO4 layered materials. Energy Environ Sci 9(11):3399–3405. https://doi.org/10.1039/C6EE00794E

    Article  CAS  Google Scholar 

  9. Ma P, Kang W, Wang Y, Cao D, Fan L, Sun D (2020) Binary metal co-substituted P2-type Na0. 67Mn0.7Cu0.15Ni0.15O2 microspheres as robust cathode for high-power sodium ion battery. Appl Surf Sci 529:147105. https://doi.org/10.1016/j.apsusc.2020.147105

    Article  CAS  Google Scholar 

  10. Evers S, Nazar LF (2013) New approaches for high energy density lithium–sulfur battery cathodes. Acc Chem Res 46(5):1135–1143. https://doi.org/10.1021/ar3001348

    Article  CAS  PubMed  Google Scholar 

  11. Qiang Z, Chen YM, Xia Y, Liang W, Zhu Y, Vogt BD (2017) Ultra-long cycle life, low-cost room temperature sodium-sulfur batteries enabled by highly doped (N, S) nanoporous carbons. Nano Energy 32:59–66. https://doi.org/10.1016/j.nanoen.2016.12.018

    Article  ADS  CAS  Google Scholar 

  12. Kumar D, Rajouria SK, Kuhar SB, Kanchan DK (2017) Progress and prospects of sodium-sulfur batteries: a review. Solid State Ion 312:8–16. https://doi.org/10.1016/j.ssi.2017.10.004

    Article  CAS  Google Scholar 

  13. Gross MM, Manthiram A (2019) Development of low-cost sodium-aqueous polysulfide hybrid batteries. Energy Stor Mater 19:346–351. https://doi.org/10.1016/j.ensm.2019.03.026

    Article  Google Scholar 

  14. Manthiram A, Yu X (2015) Ambient temperature sodium–sulfur batteries. Small 11(18):2108–2114. https://doi.org/10.1002/smll.201403257

    Article  CAS  PubMed  Google Scholar 

  15. Ye C, Chao D, Shan J, Li H, Davey K, Qiao SZ (2020) Unveiling the advances of 2D materials for Li/Na-S batteries experimentally and theoretically. Matter 2(2):323–344. https://doi.org/10.1016/j.matt.2019.12.020

    Article  CAS  Google Scholar 

  16. Lu X, Kirby BW, Xu W, Li G, Kim JY, Lemmon JP, Sprenkle VL, Yang Z (2013) Advanced intermediate-temperature Na–S battery. Energy Environ Sci 6(1):299–306. https://doi.org/10.1039/C2EE23606K

    Article  CAS  Google Scholar 

  17. Wang Y, Zhang Y, Cheng H, Ni Z, Wang Xia YG, Li X, Zeng X (2021) Research progress toward room temperature sodium sulfur batteries: a review. Molecules 26(6):1535. https://doi.org/10.3390/molecules26061535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zegeye TA, Kuo CFJ, Wotango AS, Pan CJ, Chen HM, Haregewoin AM, Cheng JH, Su WN, Hwang BJ (2016) Hybrid nanostructured microporous carbon-mesoporous carbon doped titanium dioxide/sulfur composite positive electrode materials for rechargeable lithium-sulfur batteries. J Power Sources 324:239–252. https://doi.org/10.1016/j.jpowsour.2016.05.080

    Article  CAS  Google Scholar 

  19. Chen F, Zhang Y, Hu Q, Cao S, Song S, Lu X, Shen Q (2021) S/MWCNt/LLZO composite electrode with e/S/Li+ conductive network for all-solid-state Lithium-Sulfur batteries. J Solid State Chem 301:122341. https://doi.org/10.1016/j.jssc.2021.122341

    Article  CAS  Google Scholar 

  20. Rajkumar P, Diwakar K, Subadevi R, Gnanamuthu RM, Wang FM, Sivakumar M (2020) Micro-/mesoporous nature of carbon nanofiber/silica matrix as an effective sulfur host for rechargeable lithium–sulfur batteries. J Phys D 53(26):265501. https://doi.org/10.1088/1361-6463/ab8137

    Article  ADS  CAS  Google Scholar 

  21. Liu XY, Huang M, Ma HL, Zhang ZQ, Gao JM, Zhu YL, Han XJ, Guo XY (2010) Preparation of a carbon-based solid acid catalyst by sulfonating activated carbon in a chemical reduction process. Molecules 15(10):7188–7196. https://doi.org/10.3390/molecules15107188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Song H, Suh S, Park H, Jang D, Kim J, Kim HJ (2021) Synthesis of pompon-like ZnO microspheres as host materials and the catalytic effects of nonconductive metal oxides for lithium-sulfur batteries. J Ind Eng Chem 99:309–316. https://doi.org/10.1016/j.jiec.2021.04.033

    Article  CAS  Google Scholar 

  23. Zhang X, Xie D, Wang D, Yang T, Wang X, Xia X, Gu C, Tu J (2017) Carbon fiber-incorporated sulfur/carbon ternary cathode for lithium–sulfur batteries with enhanced performance. J Solid State Electrochem 21:1203–1210. https://doi.org/10.1007/s10008-016-3460-8

    Article  CAS  Google Scholar 

  24. Thenappan M, Rengapillai S, Marimuthu S (2022) Hard carbon reprising porous morphology derived from coconut sheath for sodium-ion battery. Energies 15(21):8086. https://doi.org/10.3390/en15218086

    Article  CAS  Google Scholar 

  25. Bo Z, Shuai X, Mao S, Yang H, Qian J, Chen J, Yan J, Cen K (2014) Green preparation of reduced graphene oxide for sensing and energy storage applications. Sci Rep 4(1):1–8. https://doi.org/10.1038/srep04684

    Article  CAS  Google Scholar 

  26. Nie P, Min C, Song HJ, Chen X, Zhang Z, Zhao K (2015) Preparation and tribological properties of polyimide/carboxyl-functionalized multi-walled carbon nanotube nanocomposite films under seawater lubrication. Tribol Lett 58:1–12. https://doi.org/10.1007/s11249-015-0476-7

    Article  CAS  Google Scholar 

  27. Rajkumar P, Diwakar K, Subadevi R, Gnanamuthu RM, Sivakumar M (2019) Sulfur cloaked with different carbonaceous materials for high performance lithium sulfur batteries. Curr Appl Phys 19(8):902–909. https://doi.org/10.1016/j.cap.2019.05.001

    Article  ADS  Google Scholar 

  28. Bokuniaeva AO, Vorokh AS (2019) Estimation of particle size using the Debye equation and the Scherrer formula for polyphasic TiO2 powder. In journal of physics: Conference series. IOP Publ 1410(1):012057. https://doi.org/10.1088/1742-6596/1410/1/012057

    Article  CAS  Google Scholar 

  29. Chen ZH, Du XL, He JB, Li F, Wang Y, Li YL, Li B, Xin S (2017) Porous coconut shell carbon offering high retention and deep lithiation of sulfur for lithium–sulfur batteries. ACS Appl Mater Interfaces 9(39):33855–33862. https://doi.org/10.1021/acsami.7b09310

    Article  CAS  PubMed  Google Scholar 

  30. Thakur A, Kumar S, Rangra VS (2015) Synthesis of reduced graphene oxide (rGO) via chemical reduction, In AIP Conference Proceedings. AIP Publishing LLC 1661(1):080032. https://doi.org/10.1063/1.4915423

    Article  CAS  Google Scholar 

  31. Muruganantham R, Sivakumar M, Subadevi R, Ramaprabhu S, Wu NL (2015) Studies on graphene enfolded olivine composite electrode material via polyol technique for high-rate performance lithium-ion batteries. Electron Mater Lett 11:841–852. https://doi.org/10.1007/s13391-015-5061-6

    Article  ADS  CAS  Google Scholar 

  32. Ahn W, Kim KB, Jung KN, Shin KH, Jin CS (2012) Synthesis and electrochemical properties of a sulfur-multi walled carbon nanotubes composite as a cathode material for lithium sulfur batteries. J Power Sources 202:394–399. https://doi.org/10.1016/j.jpowsour.2011.11.074

    Article  CAS  Google Scholar 

  33. Zhu J, Chen C, Lu Y, Ge Y, Jiang H, Fu K, Zhang X (2015) Nitrogen-doped carbon nanofibers derived from polyacrylonitrile for use as anode material in sodium-ion batteries. Carbon 94:189–195. https://doi.org/10.1016/j.carbon.2015.06.076

    Article  CAS  Google Scholar 

  34. Li Y, Zhu J, Zhu P, Yan C, Jia H, Kiyak Y, Zang J, He J, Dirican M, Zhang X (2018) Glass fiber separator coated by porous carbon nanofiber derived from immiscible PAN/PMMA for high-performance lithium-sulfur batteries. J Membr Sci 552:31–42. https://doi.org/10.1016/j.memsci.2018.01.062

    Article  CAS  Google Scholar 

  35. Yang D, Ni W, Cheng J, Wang Z, Wang T, Guan Q, Zhang Y, Wu H, Li X, Wang B (2017) Flexible three-dimensional electrodes of hollow carbon bead strings as graded sulfur reservoirs and the synergistic mechanism for lithium–sulfur batteries. Appl Surf Sci 413:209–218. https://doi.org/10.1016/j.apsusc.2017.04.046

    Article  ADS  CAS  Google Scholar 

  36. Palanisamy R, Karuppiah D, Rengapillai S, Abdollahifar M, Ramasamy G, Wang FM, Liu WR, Ponnuchamy K, Shim J, Marimuthu S (2022) A reign of bio-mass derived carbon with the synergy of energy storage and biomedical applications. J Energy Storage 51:104422. https://doi.org/10.1016/j.est.2022.104422

    Article  Google Scholar 

  37. Krishnaveni K, Subadevi R, Raja M, PremKumar T, Sivakumar M (2018) Sulfur/PAN/acetylene black composite prepared by a solution processing technique for lithium-sulfur batteries. J Appl Polym Sci 135:46598. https://doi.org/10.1002/APP.46598

    Article  Google Scholar 

  38. Rochman RA, Wahyuningsih S, Ramelan AH, Hanif QA (2019) Preparation of nitrogen and sulfur Co-doped reduced graphene oxide (rGO-NS) using N and S heteroatom of thiourea. IOP Conf Ser Mater Sci Eng IOP Publ 509(1):012119. https://doi.org/10.1088/1757-899X/509/1/012119

    Article  CAS  Google Scholar 

  39. Andrijanto E, Shoelarta S, Subiyanto G, Rifki S (2016) Facile synthesis of graphene from graphite using ascorbic acid as reducing agent, In AIP Conference Proceedings. AIP Publ LLC 1725(1):020003. https://doi.org/10.1063/1.4945457

    Article  Google Scholar 

  40. Lu S, Wang X, Meng Z, Deng Q, Peng F, Yu C, Hu X, Zhao Y, Ke Y, Qi F (2019) The mechanical properties, microstructures and mechanism of carbon nanotube-reinforced oil well cement-based nanocomposites. RSC Adv 9(46):26691–26702. https://doi.org/10.1039/C9RA04723A

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  41. Amirian M, Chakoli AN, Cai W, Sui J (2013) Effect of functionalized multiwalled carbon nanotubes on thermal stability of poly (L-LACTIDE) biodegradable polymer. Sci Iran 20(3):1023–1027. https://doi.org/10.1016/j.scient.2013.05.019

    Article  Google Scholar 

  42. Yoo S, Lee J, Kim JM, Seong CY, Seong KD, Piao Y (2016) Well-dispersed sulfur wrapped in reduced graphene oxide nanoscroll as cathode material for lithium–sulfur battery. J Electroanal Chem 780:19–25. https://doi.org/10.1016/j.jelechem.2016.08.040

    Article  CAS  Google Scholar 

  43. Kalaiappan K, Rengapillai S, Marimuthu S, Murugan R, Thiru P (2020) Kombucha SCOBY-based carbon and graphene oxide wrapped sulfur/polyacrylonitrile as a high-capacity cathode in lithium-sulfur batteries. Front Chem Sci Eng 14:976–987. https://doi.org/10.1007/s11705-019-1897-x

    Article  CAS  Google Scholar 

  44. Du X, Zhang X, Guo J, Zhao S, Zhang F (2017) Hierarchical sulfur confinement by graphene oxide wrapped, walnut-like carbon spheres for cathode of Li-S battery. J Alloys Compd 714:311–317. https://doi.org/10.1016/j.jallcom.2017.04.258

    Article  CAS  Google Scholar 

  45. Ding J, Zhang Y, Huang Y, Wang X, Sun Y, Guo Y, Jia D, Tang X (2021) Sulfur and phosphorus co-doped hard carbon derived from oak seeds enabled reversible sodium spheres filling and plating for ultra-stable sodium storage. J Alloys Compd 851:156791. https://doi.org/10.1016/j.jallcom.2020.156791

    Article  CAS  Google Scholar 

  46. Zhang L, Tu LY, Liang Y, Chen Q, Li ZS, Li CH, Wang ZH, Li W (2018) Coconut-based activated carbon fibers for efficient adsorption of various organic dyes. RSC Adv 8(74):42280–42291. https://doi.org/10.1039/C8RA08990F

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  47. Al-Gaashani R, Najjar A, Zakaria Y, Mansour S, Atieh MA (2019) XPS and structural studies of high-quality graphene oxide and reduced graphene oxide prepared by different chemical oxidation methods. Ceram Int 45(11):14439–14448. https://doi.org/10.1016/j.ceramint.2019.04.165

    Article  CAS  Google Scholar 

  48. Xu GL, Xu YF, Fang JC, Peng XX, Fu F, Huang L, Li JT, Sun SG (2013) Porous graphitic carbon loading ultra-high sulfur as high-performance cathode of rechargeable lithium–sulfur batteries. ACS Appl Mater Interfaces 5(21):10782–10793. https://doi.org/10.1021/am402970x

    Article  CAS  PubMed  Google Scholar 

  49. Chulliyote R, Hareendrakrishnakumar H, Raja M, Gladis JM, Stephan AM (2017) Enhanced cyclability using a polyindole modified cathode material for lithium sulfur batteries. Sustain Energy Fuels 1(8):1774–1781. https://doi.org/10.1039/C7SE00210F

    Article  CAS  Google Scholar 

  50. Gaberšček M (2022) Impedance spectroscopy of battery cells: theory versus experiment. Curr Opin Electrochem 32:100917. https://doi.org/10.1016/j.coelec.2021.100917

    Article  CAS  Google Scholar 

  51. Lv Q, Song Y, Wang B, Wang S, Wu B, Jing Y, Ren H, Yang S, Wang L, Xiao L, Wang D (2023) Bifunctional flame retardant solid-state electrolyte toward safe Li metal batteries. J Energy Chem 81:613–622. https://doi.org/10.1016/j.jechem.2023.02.040

    Article  CAS  Google Scholar 

  52. Hu Y, Yang QR, Ma J, Chou SL, Zhu M, Li Y (2015) Sn/SnO2@ C composite nanofibers as advanced anode for lithium-ion batteries. Electrochim Acta 186:271–276. https://doi.org/10.1016/j.electacta.2015.10.185

    Article  CAS  Google Scholar 

  53. Wang Z, Liu J, Du Z, Tao H, Yue Y (2020) Enhancing Na-ion storage in Na 3 V 2 (PO 4) 3/C cathodes for sodium ion batteries through Br and N co-doping. Inorg Chem Front 7(5):1289–1297. https://doi.org/10.1039/C9QI01690B

    Article  CAS  Google Scholar 

  54. He Q, Zhu Y, Li Y, Ma S, Wang D, Xie J (2023) Etch-driven N, P co-doped hierarchical porous carbon embedded with Ni nanoparticles as an efficient dynamic carrier for room-temperature NaS battery. J Energy Storage 25(74):109353. https://doi.org/10.1016/j.est.2023.109353

    Article  Google Scholar 

  55. Yu X, Manthiram A (2014) Room-temperature sodium–sulfur batteries with liquid-phase sodium polysulfide catholytes and binder-free multiwall carbon nanotube fabric electrodes. J Phys Chem C 118(40):22952–22959. https://doi.org/10.1021/jp507655u

    Article  CAS  Google Scholar 

  56. Guo Q, Sun S, Kim KI, Zhang H, Liu X, Yan C, Xia H (2021) A novel one-step reaction sodium-sulfur battery with high areal sulfur loading on hierarchical porous carbon fiber. Carbon Energy 3(3):440–448. https://doi.org/10.1002/cey2.86

    Article  CAS  Google Scholar 

  57. Huo X, Liu Y, Li R, Li J (2019) Two-dimensional Ti3C2Tx@ S as cathode for room temperature sodium-sulfur batteries. Ionics 25:5373–5382. https://doi.org/10.1007/s11581-019-03074-6

    Article  CAS  Google Scholar 

  58. Syali MS, Kumar D, Mishra K, Kanchan DK (2020) Recent advances in electrolytes for room-temperature sodium-sulfur batteries: a review. Energy Stor Mater 31:352–372. https://doi.org/10.1016/j.ensm.2020.06.023

    Article  Google Scholar 

  59. Xu X, Zhou D, Qin X, Lin K, Kang F, Li B, Shanmukaraj D, Rojo T, Armand M, Wang G (2018) A room-temperature sodium–sulfur battery with high capacity and stable cycling performance. Nat Commun 24 9(1):3870. https://doi.org/10.1038/s41467-018-06443-3

  60. Ghosh A, Shukla S, Monisha M, Kumar A, Lochab B, Mitra S (2017) Sulfur copolymer: a new cathode structure for room-temperature sodium–sulfur batteries. ACS Energy Lett 2(10):2478–2485(l). https://doi.org/10.1021/acsenergylett.7b00714

Download references

Acknowledgements

All the authors of Alagappa University acknowledge the financial support by the Ministry of Human Resource Development RUSA-Phase 2.0 grant sanctioned vide Lt.No.F-24-51/2014 U Policy (TNMulti Gen), Dept. of Education, Govt. of India.

Funding

Ministry of Education,India,RUSA- Phase 2.0 grant sanctioned vide Lt.No.F-24-51/2014 U Policy (TNMulti Gen),RUSA- Phase 2.0 grant sanctioned vide Lt.No.F-24-51/2014 U Policy (TNMulti Gen),RUSA- Phase 2.0 grant sanctioned vide Lt.No.F-24-51/2014 U Policy (TNMulti Gen)

Author information

Authors and Affiliations

Authors

Contributions

JJP: methodology, validation, software, formal analysis, investigation, validation, writing—original draft, visualization, data curation. RS: conceptualization, methodology, validation, formal analysis, investigation, resources, validation, writing and review/editing, visualization, supervision, project administration, funding acquisition. ES: methodology validation, formal analysis, software, validation, visualization, data curation. SR: methodology, validation, software, formal analysis, investigation, validation, visualization, data curation, resources. MS: conceptualization, methodology, validation, formal analysis, investigation, resources, validation, writing and review/editing, visualization, supervision, project administration, funding acquisition.

Corresponding authors

Correspondence to Subadevi Rengapillai or Sivakumar Marimuthu.

Ethics declarations

Ethical approval

In this investigation, no human and/or animal tissues and related things have been used.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 181 KB)

Supplementary file2 (DOCX 13 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Janshirani, P.J., Rengapillai, S., Elumalai, S. et al. Sulfur-encapsulated carbon templet as a structured cathode material for secondary sodium-sulfur battery. Ionics (2024). https://doi.org/10.1007/s11581-024-05422-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11581-024-05422-7

Keywords

Navigation