Skip to main content
Log in

Preparation of NiMoO4 porous nanosheets by freezing method as adhesive-free electrodes for high-performance flexible supercapacitors

  • Research
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

This article successfully prepared porous NiMoO4 sheet-like structured nanomaterials deposited on carbon cloth using the freeze-drying method. The morphology and phase structure were characterized by SEM, TEM, and XRD, proving that the material is NiMoO4 porous nanosheets. The NiMoO4 porous nanosheets have a large specific surface area, which increases the reaction sites of the material, shortens the transmission distance of electrons and ions, accelerates the reaction rate, and thus improves the charge storage capacity. We conducted electrochemical performance tests on the material, and the test results showed that the specific capacity was 1683 F/g at a current density of 5 A/g. After 5000 cycles, the capacitance retention rate was 99.7%. We further assembled NiMoO4 porous nanosheets as positive electrodes and CNTs as negative electrodes to form solid-state asymmetric capacitor devices. At a current density of 15 A/g and a working window voltage of 1.6 V, the asymmetric device has an energy density of 70.8 Wh/Kg and a power density of 7000 W/Kg. After 10,000 cycles at a current density of 5 A/g, the device exhibits excellent cycling stability with a capacitance retention rate of 87.6%. This article provides a valuable reference for the development of electrode materials for capacitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Brooke R, Ahlin J, Huebscher K, Hagel O, Strandberg J, Sawatdee A, Edberg J (2022) Large-scale paper supercapacitors on demand. J Energy Storage 50:104191

    Article  Google Scholar 

  2. Yang K, Fan QW, Song CY, Zhang YC, Sun YM, Jiang W, Fu P (2023) Enhanced functional properties of porous carbon materials as high-performance electrode materials for supercapacitors. Green Energy Resour 1(3):100030

    Article  Google Scholar 

  3. Shaheen I, Hussain I, Zahra T, Javed MS, Shah SSA, Khan K, Hanif MB, Assiri MA, Said Z, Arifeen WU, Akkinepally B, Zhang K (2023) Recent advancements in metal oxides for energy storage materials: design, classification, and electrodes configuration of supercapacitor. J Energy Storage 72:108719

    Article  Google Scholar 

  4. Jamadar NM, Jadhav HT (2022) Effectiveness of supercapacitor during braking operation of electric vehicle. Mater Today: Proc 56:314–319

    CAS  Google Scholar 

  5. Yi SH, Chan YC, Mo CL, Lin HC, Chen MJ (2022) Enhancement of energy storage for electrostatic supercapacitors through built-in electric field engineering. Nano Energy 99:107342

    Article  CAS  Google Scholar 

  6. Premkumar M, Vadivel S (2023) Fabrication of binder-free CNT/FeNiS2@PPy mixed metal sulfide loaded Ni Foam as cathode material for asymmetric supercapacitor applications. J Energy Storage 69:107948

    Article  Google Scholar 

  7. Liu KL, Yu C, Guo W, Ni L, Yu JH, Xie YY, Wang Z, Ren YW, Qiu JS (2021) Recent research advances of self-discharge in supercapacitors: mechanisms and suppressing strategies. J Energy Chem 58:94–109

    Article  CAS  Google Scholar 

  8. Fu XD, Li T, Qi FL, Zhang S, Wen JX, Shu WL, Luo P, Zhang R, Hu SF, Liu QT (2020) Designing high electrochemical surface area between polyaniline and hydrogel polymer electrolyte for flexible supercapacitors. Appl Surf Sci 507:145135

    Article  CAS  Google Scholar 

  9. Zhao JY, Burke AF (2021) Review on supercapacitors: technologies and performance evaluation. J Energy Chem 59:276–291

    Article  CAS  Google Scholar 

  10. Adnan SM, Shoeb M, Ansari MZ, Mashkoor F, Mobin M, Zaidi S, Jeong C (2023) Fabrication of NiO–CuO decorated polyaniline (PANI/NiO–CuO) nanocomposite based symmetric supercapacitor device for high-energy density performance with wide potential window in aqueous electrolyte. Inorg Chem Commun 157:111265

    Article  CAS  Google Scholar 

  11. Shwetha KP, Manjunatha C, Kamath MS, Rastogi CK, Chaudhary V, Maurya G, Athreya Y, Shivaraj B, Khosla A (2023) Fabrication of super-high energy density asymmetric supercapacitor prototype device employing NiCo2S4@f-MWCNT nanocomposite. J Energy Storage 72:108657

    Article  Google Scholar 

  12. Oh HG, Yang SH, Kang YC, Park SK (2021) N-doped carbon-coated CoSe2 nanocrystals anchored on two-dimensional MXene nanosheets for efficient electrochemical sodium-and potassium-ion storage. Int J Energy Res 45(12):17738–17748

    Article  CAS  Google Scholar 

  13. Jang YJ, Park SK (2022) Rational design of hierarchical Ni-Mo bimetallic Selenide/N-doped carbon microspheres toward high–performance potassium ion batteries. Appl Surf Sci 583:152491

    Article  Google Scholar 

  14. Oh HG, Na JH, Park SK (2023) Construction of mesoporous N-doped carbon-coated MXene-MoS2 heterostructured microspheres via a spray-drying method as a high capacity and long cycle-life anode for potassium-ion batteries. J Alloy Compd 968:171927

    Article  CAS  Google Scholar 

  15. Wang D, Zhou JS, Yang LW, Shi C, Gao FM (2023) Boron-based composites anode leads to ultrahigh power and energy density of lithium-ion capacitor. Colloids Surf, A 670:131559

    Article  CAS  Google Scholar 

  16. Pal B, Matsoso JB, Parameswaran AK, Roy PK, Lukas D, Luxa J, Marvan P, Azadmanjiri J, Hrdlicka Z, Jose R, Sofer Z (2022) Flexible, ultralight, and high-energy density electrochemical capacitors using sustainable materils. Electrochim Acta 415:140239

    Article  CAS  Google Scholar 

  17. Wang P, Yin YN, Fang LX, He JC, Wang YQ, Cai HP, Yang QL, Shi ZQ, Xiong CX (2023) Flexible cellulose/PVDF composite films with improved breakdown strength and energy density for dielectric capacitors. Compos A Appl Sci Manuf 164:107325

    Article  CAS  Google Scholar 

  18. Hu J, Zhang SF, Tang BT (2021) Rational design of nanomaterials for high energy density dielectric capacitors via electrospinning. Energy Storage Mater 37:530–555

    Article  Google Scholar 

  19. Shinde PA, Chodankar NR, Abdelkareem MA, Patil SJ, Han YK, Elsaid K, Olabi AG (2022) All transition metal selenide composed High-energy solid-state hybrid supercapacitor. Small 18(20):2200248

    Article  CAS  Google Scholar 

  20. Shinde PA, Chodankar NR, Kim HJ, Abdelkareem MA, Ghaferi AA, Han YK, Ariga K (2023) Ultrastable 1T–2H WS2 heterostructures by nanoarchitectonics of phosphorus-triggered phase transition for hybrid supercapacitors. ACS Energy Lett 8(10):4474–4487

    Article  CAS  Google Scholar 

  21. Shinde PA, Olabi AG, Chodankar NR, Patil SJ, Hwang SK, Abdelkareem MA (2023) Realizing superior redox kinetics of metal-metal carbides/carbon coordination supported heterointerface for stable solid-state hybrid supercapacitor. Chem Eng J 454:140246

    Article  CAS  Google Scholar 

  22. Shinde PA, Chodankar NR, Abdelkareem MA, Han YK, Olabi AG (2022) Nitridation-induced in situ coupling of Ni-Co4N particles in nitrogen-doped carbon nanosheets for hybrid supercapacitors. Chem Eng J 428:131888

    Article  CAS  Google Scholar 

  23. Cheng Q, Chen W, Dai H, Liu Y, Dong XB (2021) Energy storage performance of electric double layer capacitors with gradient porosity electrodes. J Electroanal Chem 889:115221

    Article  CAS  Google Scholar 

  24. Liu L, Lv WB, Wang HY (2023) Synergetic surface coating and S-rich vacancy reconstruction NiCo2S4 electrode materials for high cycle stability asymmetric supercapacitor applications. J Energy Storage 73:109062

    Article  Google Scholar 

  25. Zhang W, Yu S, Hu HQ, Fei YL, Chen L, Zhang TH (2023) Binder-free self-supporting electrodes formed by intercalation of RuO2 on wood-derived carbon for supercapacitor. Appl Surf Sci 640:158285

    Article  CAS  Google Scholar 

  26. Li H, Wang XY, Li CY, Wang XF, Liu X, Li BW, Wu Y (2023) First-principles study of quantum capacitance of transition metal oxides and nitrogen functionalized graphene as electrode materials for supercapacitor. Physica B 667:415195

    Article  CAS  Google Scholar 

  27. Tahir S, Murtaza G, Alhummiany H, Hassan M, Albalawi H, Aljameel AI, Hussein KI, Mahmood Q (2023) Experimental and computational study of binary transition metal oxides NaNi1/2 X1/2 O2 (X= Cr, Fe, Co and Cu) for energy storage applications. Mater Chem Phys 128093

  28. Zhou DX, Tang R, Min YL, Hu ZH, Shi PH (2023) External electric field-assisted electronic restructuring of transition metal oxides derived from spent lithium-ion batteries to enhance persulfate activation. Appl Surf Sci 625:157120

    Article  CAS  Google Scholar 

  29. Ojha GP, Pant B, Acharya J, Lohani PC, Park M (2023) Solvothermal-localized selenylation transformation of cobalt nickel MOFs templated heterointerfaces enriched monoclinic Co3Se4/CoNi2Se4@activated knitted carbon cloth for flexible and bi-axial stretchable supercapacitors. Chem Eng J 464:142621

    Article  CAS  Google Scholar 

  30. Shameem A, Devendran P, Murugan A, Siva V, Bahadur SA (2023) Cost-effective synthesis of efficient La doped CoMoO4 nanocomposite electrode for sustainable high-energy symmetric supercapacitors. J Energy Storage 73:108856

    Article  Google Scholar 

  31. Mesbah YI, Ahmed N, Hasan MM, Allam NK (2023) Optimized extraction of mesoporous nanocomposites from spent Li-ion batteries and their use to construct high-performance supercapacitor devices with ultra-high stability. Mater Today Chem 30:101521

    Article  CAS  Google Scholar 

  32. Beemarao M, Kanagambal P, Ravichandran K, Rajeswaran P, Ashraf IM, Chalapathi U, Park SH (2023) Hybrids of porous NiMoO4@Reduced graphene oxide composites for asymmetric supercapacitor applications. Inorg Chem Commun 153:110853

    Article  CAS  Google Scholar 

  33. Dabir MP, Masoudpanah SM, Mamizadeh M (2023) CTAB-assisted hydrothermal synthesis of platelike and nanorod-like NiMoO4 morphologies for supercapacitor and hydrogen evolution applications. J Energy Storage 70:107951

    Article  Google Scholar 

  34. Yin ZX, Zhang S, Chen YJ, Gao P, Zhu CL, Yang PP, Qi LH (2015) Hierarchical nanosheet-based NiMoO4 nanotubes: synthesis and high supercapacitor performance. J Mater Chem A 3(2):739–745

    Article  CAS  Google Scholar 

  35. Guo D, Zhang P, Zhang HM, Yu XZ, Zhu J, Li QH, Wang TH (2013) NiMoO4 nanowires supported on Ni foam as novel advanced electrodes for supercapacitors. J Mater Chem A 1(32):9024–9027

    Article  CAS  Google Scholar 

  36. Zhu Z, Zang L, Chu M, He Y, Ren D, Saha P, Cheng Q (2022) Oxygen-vacancy and phosphorus-do** enriched NiMoO4 nanoarrays for high-energy supercapacitors. J Energy Storage 54:105314

    Article  Google Scholar 

  37. Wang GG, Chen QY, Zhang J, An XG, Liu Q, Xie LS, Yao WT, Sun XP, Kong QQ (2023) NiMoO4 nanorods with oxygen vacancies self-supported on Ni foam towards high-efficiency electrocatalytic conversion of nitrite to ammonia. J Colloid Interface Sci 647:73–80

    Article  ADS  CAS  PubMed  Google Scholar 

  38. Khadka A, Samuel E, Joshi B, Kim YI, Aldalbahi A, El-Newehy M, Yoon SS\ (2023) Bimetallic CoMoO4 nanosheets on freestanding nanofiber as wearable supercapacitors with long-term stability. Int J Energy Res 2023

  39. He WX, Jiang S, Pang MG, Li JW, Pang M, Mao MM, Wang RW, Yang H, Pan QL, Zhao J (2023) A free-standing NiMoO4@Mg-Co(OH)F core-shell nanocomposites supported on Ni foam for asymmetric supercapacitor applications. Colloids Surf, A 660:130883

    Article  CAS  Google Scholar 

  40. Sun YS, Liu ZQ, Zheng XZ, Wang CX, Wang JH, Jiang MY, Jiang DG, Liu JQ (2023) Construction of KCu7S4@NiMoO4 three-dimensional core-shell hollow structure with high hole mobility and fast ion transport for high-performance hybrid supercapacitors. Compos B Eng 249:110409

    Article  CAS  Google Scholar 

  41. Ren B, Wang XE, Zhang X, Wang B, Li Y, Zeng X, Zhang XF, Fan MQ, Yang XD (2023) Designed formation of hierarchical core-shell NiCo2S4@NiMoO4 arrays on cornstalk biochar as battery-type electrodes for hybrid supercapacitors. J Alloys Compd 937:168403

    Article  CAS  Google Scholar 

  42. Yousefipour K, Sarraf-Mamoory R, Maleki AC (2023) A new strategy for the preparation of multi-walled carbon nanotubes/NiMoO4 nanostructures for high-performance asymmetric supercapacitors. J Energy Storage 59:106438

    Article  Google Scholar 

  43. Zhang YR, Yang YF, Mao LX, Cheng D, Zhan ZY, Xiong J (2016) Growth of three-dimensional hierarchical Co3O4@NiMoO4 core-shell nanoflowers on Ni foam as electrode materials for hybrid supercapacitors. Mater Lett 182:298–301

    Article  CAS  Google Scholar 

  44. Zhang HF, Lu CX, Hou H, Ma YY, Yuan S (2019) Tuning the electrochemical performance of NiCo2O4@NiMoO4 core-shell heterostructure by controlling the thickness of the NiMoO4 shell. Chem Eng J 370:400–408

    Article  CAS  Google Scholar 

  45. Liu T, Chai H, Jia DZ, Su Y, Wang T, Zhou WY (2015) Rapid microwave-assisted synthesis of mesoporous NiMoO4 nanorod/reduced graphene oxide composites for high-performance supercapacitors. Electrochim Acta 180:998–1006

    Article  CAS  Google Scholar 

  46. Ren B, Wang XE, Zhang X, Wang B, Li Y, Zeng X, Zhang XF, Fan MQ, Yang XD (2023) Designed formation of hierarchical core-shell NiCo2S4@NiMoO4 arrays on cornstalk biochar as battery-type electrodes for hybrid supercapacitors. J Alloy Compd 937:168403

    Article  CAS  Google Scholar 

Download references

Funding

This research was supported by the National Natural Science Foundation of China (No. 52002099), the Youth Scientific Research Item of Harbin Commercial University (18XN034), and the Foundation of State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering (Grant No. 2022-K74). Basic research business fees for provincial higher education institutions in Heilongjiang Province (2023-KYYWF-1015).

Author information

Authors and Affiliations

Authors

Contributions

Y.L. and J.W.1 planned this study. Y.L. conducted an experiment, organized the data, and wrote an article. T.H. and J.W.2 revised the experimental data, J.H. and S.W. participated in the organization of the experimental data, T.M and Y.H. contributed to the analysis of the experimental data, and all authors reviewed the first draft.

Corresponding author

Correspondence to Jing Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 762 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Liu, Y., Hao, T. et al. Preparation of NiMoO4 porous nanosheets by freezing method as adhesive-free electrodes for high-performance flexible supercapacitors. Ionics 30, 1749–1758 (2024). https://doi.org/10.1007/s11581-024-05379-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-024-05379-7

Keywords

Navigation