Skip to main content
Log in

Green utilization of silicon slime: recovery of Si and synergetic preparation of porous silicon as lithium-ion battery anode materials

  • Research
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

With the flourishing development of the photovoltaic industry, the waste of silicon slime generated by photovoltaic cutting has been a serious environmental problem, along with silicon resource waste. In this paper, the waste silicon slime produced by the photovoltaic industry was used as raw materials. Porous silicon particles were synthesized with the magnesium thermal reduction method, combined with hydrofluoric acid etching. The porous silicon can be applied to be the anode material of lithium-ion batteries. The synergistic effect of magnesium thermal reduction and acid etching on the preparation of porous silicon materials was studied. A lower heating rate of 5 °C/min will result in less heat accumulation, which can avoid the formation of large-sized Si/MgO composite particles and obtain a well-dispersed morphology. After a current density of 100 mA·g−1, the reversible capacity of porous silicon anode is 751.1 mAh/g after 50 cycles. Compared with commercial nano silicon, its cycle stability and cycle performance have been improved, which provides a new approach for green reutilization of waste silicon slime in the photovoltaic industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All data generated and analyzed during this study are included in this article.

References

  1. Goodenough JB, Park K-S (2013) The Li-ion rechargeable battery: a perspective. J Am Chem Soc 135(4):1167–1176. https://doi.org/10.1021/ja3091438

    Article  CAS  PubMed  Google Scholar 

  2. Su X, Wu Q, Li J et al (2014) Silicon-based nanomaterials for lithium-ion batteries: a review. Adv Energy Mater 4(1):1300882. https://doi.org/10.1002/aenm.201300882

    Article  CAS  Google Scholar 

  3. Liu Y, Zhou G, Liu K et al (2017) Design of complex nanomaterials for energy storage: past success and future opportunity. Acc Chem Res 50(12):2895–2905. https://doi.org/10.1021/acs.accounts.7b00450

    Article  CAS  PubMed  Google Scholar 

  4. Pomerantseva E, Bonaccorso F, Feng X et al (2019) Energy storage: the future enabled by nanomaterials. Science 366(6468):eaan8285. https://doi.org/10.1126/science.aan8285

    Article  CAS  PubMed  Google Scholar 

  5. Chen X, Li H, Yan Z et al (2019) Structure design and mechanism analysis of silicon anode for lithium-ion batteries. Science China Mater 62(11):1515–1536. https://doi.org/10.1007/s40843-019-9464-0

    Article  CAS  Google Scholar 

  6. Asenbauer J, Eisenmann T, Kuenzel M et al (2020) The success story of graphite as a lithium-ion anode material – fundamentals, remaining challenges, and recent developments including silicon (oxide) composites. Sustain Energy Fuels 4(11):5387–5416. https://doi.org/10.1039/D0SE00175A

    Article  CAS  Google Scholar 

  7. Ge M, Cao C, Biesold GM et al (2021) Recent advances in silicon-based electrodes: from fundamental research toward practical applications. Adv Mater 33(16):e2004577. https://doi.org/10.1002/adma.202004577

    Article  CAS  PubMed  Google Scholar 

  8. Wang L, Xi F, Zhang Z et al (2021) Recycling of photovoltaic silicon waste for high-performance porous silicon/silver/carbon/graphite anode. Waste Manag 132:56–63. https://doi.org/10.1016/j.wasman.2021.07.014

    Article  CAS  PubMed  Google Scholar 

  9. Yi Z, Lin N, Zhao Y et al (2019) A flexible micro/nanostructured Si microsphere cross-linked by highly-elastic carbon nanotubes toward enhanced lithium ion battery anodes. Energy Storage Materials 17:93–100. https://doi.org/10.1016/j.ensm.2018.07.025

    Article  Google Scholar 

  10. Chen H, Wang Z, Hou X et al (2017) Mass-producible method for preparation of a carbon-coated graphite@plasma nano-silicon@carbon composite with enhanced performance as lithium ion battery anode. Electrochim Acta 249:113–121

    Article  CAS  Google Scholar 

  11. Wang J, Huang W, Kim YS et al (2020) Scalable synthesis of nanoporous silicon microparticles for highly cyclable lithium-ion batteries. Nano Res 13(6):1558–1563. https://doi.org/10.1007/s12274-020-2770-4

    Article  CAS  Google Scholar 

  12. Liu Z, Yu Q, Zhao Y et al (2019) Silicon oxides: a promising family of anode materials for lithium-ion batteries. Chem Soc Rev 48(1):285–309. https://doi.org/10.1039/c8cs00441b

    Article  CAS  PubMed  Google Scholar 

  13. Jin Y, Zhu B, Lu Z et al (2017) Challenges and recent progress in the development of Si anodes for lithium-ion battery. Adv Energy Mater 7(23):1700715. https://doi.org/10.1002/aenm.201700715

    Article  CAS  Google Scholar 

  14. Wang K, Pei S, He Z et al (2019) Synthesis of a novel porous silicon microsphere@carbon core-shell composite via in situ MOF coating for lithium ion battery anodes. Chem Eng J 356:272–281. https://doi.org/10.1016/j.cej.2018.09.027

    Article  CAS  Google Scholar 

  15. Liu Z, Guan D, Yu Q et al (2018) Monodisperse and homogeneous SiOx/C microspheres: a promising high-capacity and durable anode material for lithium-ion batteries. Energy Storag Mater 13:112–118. https://doi.org/10.1016/j.ensm.2018.01.004

    Article  CAS  Google Scholar 

  16. Zhu J, Wierzbicki T, Li W (2018) A review of safety-focused mechanical modeling of commercial lithium-ion batteries. J Power Sources 378:153–168. https://doi.org/10.1016/j.jpowsour.2017.12.034

    Article  CAS  Google Scholar 

  17. Casimir A, Zhang H, Ogoke O et al (2016) Silicon-based anodes for lithium-ion batteries: effectiveness of materials synthesis and electrode preparation. Nano Energy 27:359–376. https://doi.org/10.1016/j.nanoen.2016.07.023

    Article  CAS  Google Scholar 

  18. Zheng G, Lee SW, Liang Z et al (2014) Interconnected hollow carbon nanospheres for stable lithium metal anodes. Nat Nanotechnol 9(8):618–623. https://doi.org/10.1038/nnano.2014.152

    Article  CAS  PubMed  Google Scholar 

  19. Ren W, Wang Y, Zhang Z et al (2016) Carbon-coated porous silicon composites as high performance Li-ion battery anode materials: can the production process be cheaper and greener? J Mater Chem A 4(2):552–560. https://doi.org/10.1039/C5TA07487H

    Article  CAS  Google Scholar 

  20. Wu Y, Chen G, Wang Z et al (2018) In situ constructed Ag/C conductive network enhancing the C-rate performance of Si based anode. J Energy Storag 17:102–108. https://doi.org/10.1016/j.est.2018.02.016

    Article  Google Scholar 

  21. Jia H, Zheng J, Song J et al (2018) A novel approach to synthesize micrometer-sized porous silicon as a high performance anode for lithium-ion batteries. Nano Energy 50:589–597. https://doi.org/10.1016/j.nanoen.2018.05.048

    Article  CAS  Google Scholar 

  22. Zhang L, Zhang L, Chai L et al (2014) A coordinatively cross-linked polymeric network as a functional binder for high-performance silicon submicro-particle anodes in lithium-ion batteries. J Mater Chem A 2(44):19036–19045. https://doi.org/10.1039/C4TA04320K

    Article  CAS  Google Scholar 

  23. Saga T (2010) Advances in crystalline silicon solar cell technology for industrial mass production. NPG Asia Mater 2(3):96–102. https://doi.org/10.1038/asiamat.2010.82

    Article  Google Scholar 

  24. Li JW, Lin YH, Wang FM et al (2021) Progress in recovery and recycling of kerf loss silicon waste in photovoltaic industry. Sep Purif Technol 254. https://doi.org/10.1016/j.seppur.2020.117581

  25. Liu Y, S Wang, S Jiang et al(2019) Clean synthesis and formation mechanisms of high-purity silicon for solar cells by the carbothermic reduction of SiC with SiO2 ChemistrySelec t4(14): 4025-4034. https://doi.org/10.1002/slct.201900287

  26. Maeng S-H, Lee H, Park MS et al (2020) Ultrafast carbothermal reduction of silica to silicon using a CO2 laser beam. Sci Rep 10(1):21730. https://doi.org/10.1038/s41598-020-78562-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zheng C-H, Zhang G-P, Wang S-S et al (2021) Efficient transformation of rice husk to a high-performance Si@SiO2@C anode material by a mechanical milling and molten salt coactivated magnesiothermic reduction. J Alloys Compd 875:159974. https://doi.org/10.1016/j.jallcom.2021.159974

    Article  CAS  Google Scholar 

  28. Tao H-C, Fan L-Z, Qu X (2012) Facile synthesis of ordered porous Si@C nanorods as anode materials for Li-ion batteries. Electrochim Acta 71:194–200. https://doi.org/10.1016/j.electacta.2012.03.139

    Article  CAS  Google Scholar 

  29. Li Q, Yin L, Ma J et al (2015) Mesoporous silicon/carbon hybrids with ordered pore channel retention and tunable carbon incorporated content as high performance anode materials for lithium-ion batteries. Energy 85:159–166. https://doi.org/10.1016/j.energy.2015.03.090

    Article  CAS  Google Scholar 

  30. Zhong H, Zhan H, Zhou Y-H (2014) Synthesis of nanosized mesoporous silicon by magnesium-thermal method used as anode material for lithium ion battery. J Power Sources 262:10–14. https://doi.org/10.1016/j.jpowsour.2014.03.108

    Article  CAS  Google Scholar 

  31. Ma X, Liu M, Gan L et al (2014) Novel mesoporous Si@C microspheres as anodes for lithium-ion batteries. Phys Chem Chem Phys 16(9):4135–4142. https://doi.org/10.1039/C3CP54507E

    Article  CAS  PubMed  Google Scholar 

  32. Li Q, Yin L, Gao X (2015) Reduction chemical reaction synthesized scalable 3D porous silicon/carbon hybrid architectures as anode materials for lithium ion batteries with enhanced electrochemical performance. RSC Adv 5(45):35598–35607. https://doi.org/10.1039/C5RA05342K

    Article  CAS  Google Scholar 

  33. Bao Z, Weatherspoon MR, Shian S et al (2007) Chemical reduction of three-dimensional silica micro-assemblies into microporous silicon replicas. Nature 446(7132):172–175. https://doi.org/10.1038/nature05570

    Article  CAS  PubMed  Google Scholar 

  34. Arafat MY, Islam MA, Mahmood AWB et al (2021) Fabrication of black silicon via metal-assisted chemical etching—a review. Sustain 13(19):10766

    Article  CAS  Google Scholar 

  35. Shi L, Wang W, Wang A et al (2016) Understanding the impact mechanism of the thermal effect on the porous silicon anode material preparation via magnesiothermic reduction. J Alloys Compd 661:27–37. https://doi.org/10.1016/j.jallcom.2015.11.196

    Article  CAS  Google Scholar 

  36. Daulay A, Andriayani M et al (2022) Scalable synthesis of porous silicon nanoparticles from rice husk with the addition of KBr as a scavenger agent during reduction by the magnesiothermic method as anode lithium-ion batteries with sodium alginate as the binder. South African J Chem Eng 41:203–210. https://doi.org/10.1016/j.sajce.2022.06.005

    Article  Google Scholar 

  37. Liu N, Huo K, Mcdowell MT et al (2013) Rice husks as a sustainable source of nanostructured silicon for high performance Li-ion battery anodes. Sci Rep 3(1):1919. https://doi.org/10.1038/srep01919

    Article  PubMed  PubMed Central  Google Scholar 

  38. Fan ZQ, Zheng SS, He S et al (2020) Preparation of micron Si@C anodes for lithium ion battery by recycling the lamellar submicron silicon in the kerf slurry waste from photovoltaic industry. Diam Relat Mater 107. https://doi.org/10.1016/j.diamond.2020.107898

  39. Zhang SY, Xie J, Wu CY et al (2020) A low-cost preparation of Si@C composite anode from Si photovoltaic waste. Int J Electrochem Sci 15(7):6582–6595. https://doi.org/10.20964/2020.07.24

    Article  CAS  Google Scholar 

  40. Li Q, Jiang R, Dou Y et al (2011) Synthesis of mesoporous carbon spheres with a hierarchical pore structure for the electrochemical double-layer capacitor. Carbon 49(4):1248–1257. https://doi.org/10.1016/j.carbon.2010.11.043

    Article  CAS  Google Scholar 

  41. Mukherjee R, Krishnan R, Lu T-M et al (2012) Nanostructured electrodes for high-power lithium ion batteries. Nano Energy 1(4):518–533. https://doi.org/10.1016/j.nanoen.2012.04.001

    Article  CAS  Google Scholar 

  42. Chen X, Li C, Grätzel M et al (2012) Nanomaterials for renewable energy production and storage. Chem Soc Rev 41(23):7909–7937. https://doi.org/10.1039/C2CS35230C

    Article  CAS  PubMed  Google Scholar 

  43. Hochgatterer NS, Schweiger MR, Koller S et al (2008) Silicon/graphite composite electrodes for high-capacity anodes: influence of binder chemistry on cycling stability. Electrochem Solid-State Lett 11(5):A76. https://doi.org/10.1149/1.2888173

    Article  CAS  Google Scholar 

  44. Soulairol I, Sanchez-Ballester NM, Aubert A et al (2018) Evaluation of the super disintegrant functionnalities of alginic acid and calcium alginate for the design of orodispersible mini tablets. Carbohydr Polym 197:576–585. https://doi.org/10.1016/j.carbpol.2018.06.002

    Article  CAS  PubMed  Google Scholar 

  45. Wu Z-Y, Deng L, Li J-T et al (2017) Multiple hydrogel alginate binders for Si anodes of lithium-ion battery. Electrochim Acta 245:371–378. https://doi.org/10.1016/j.electacta.2017.05.094

    Article  CAS  Google Scholar 

  46. Wang JP, Zhang L, Zhang HT (2018) Effects of electrolyte additive on the electrochemical performance of Si/C anode for lithium-ion batteries. IONICS 24(11):3691–3698. https://doi.org/10.1007/s11581-018-2682-4

    Article  CAS  Google Scholar 

  47. Ren W-F, Zhou Y, Li J-T et al (2019) Si anode for next-generation lithium-ion battery. Curr Opinion Electrochem 18:46–54. https://doi.org/10.1016/j.coelec.2019.09.006

    Article  CAS  Google Scholar 

Download references

Funding

This study was financially supported by the Regional Innovation Capability Guidance Plan of Shaanxi Province (No. 2022QFY10–05).

Author information

Authors and Affiliations

Authors

Contributions

Yuehao Guo designed the research. Yuehao Guo, Bin Wang, Jinjing Du, and Qian Li fabricated the devices and performed the electrochemical performance test. Xuan Zhang, Yanru Bao, and Jingtian Liu contributed to the sample fabrication and processing. Dongbo Wang, Jiayi Ma, and Yu Zhou contributed to the sample structure detection. Yuehao Guo, Jinjing Du, and Bin Wang analyzed the data and wrote the paper. All authors participated in the discussions.

Corresponding author

Correspondence to Jinjing Du.

Ethics declarations

Ethical approval

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, B., Guo, Y., Du, J. et al. Green utilization of silicon slime: recovery of Si and synergetic preparation of porous silicon as lithium-ion battery anode materials. Ionics 29, 5099–5110 (2023). https://doi.org/10.1007/s11581-023-05229-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-023-05229-y

Keywords

Navigation