Skip to main content
Log in

Adsorption of lead (II) ions on kaolinite from aqueous solutions: isothermal, kinetic, and thermodynamic studies

  • Research
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Due to industrial activity, heavy metal contamination is present in water, air, and soil around the world. Due to this circumstance, serious environmental issues arise. In this investigation, kaolin (NK), which was employed as an adsorbent, was transported from the beds in Karaçayır, Uşak, Turkey. Natural kaolin (NK) clay underwent batch processing to remove Pb2+. Investigations were done into how adsorption is impacted by contact duration, adsorbent dosage, temperature, and solution pH. Kaolin’s BET surface area was found to be 8.085 m2/g, while its pore volume was found to be 0.0537 cm3/g. The best working conditions were found to be a pH of 6.87 and an equilibrium period of 80 min. It was discovered that the Langmuir isotherm model was the most suitable one. At 298 K, 308 K, and 318 K, respectively, the adsorption capacities of NK were calculated to be 4.24, 5.69, and 6.08 mg/g. The removal capacity of Pb2+ solution by NK at a 200 mg/L concentration was found to be 42.4%, 56.9%, and 60.8%, respectively, depending on the temperature. The pseudo-second-order kinetic model agreed with this. It was revealed that NK had a maximum desorption efficiency of 93.07%. Through this process, the potential of NK as an eco-friendly adsorbent for heavy metal removal was shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Baysal Z, Cinar E, Bulut Y, Alkan H, Dogru M (2009) Equilibrium and thermodynamic studies on biosorption of Pb (II) onto Candida albicans biomass. J Hazard Mater 161(1):62–67

    Article  CAS  PubMed  Google Scholar 

  2. Ofudje EA, Awotula AO, Hambate GV, Akinwunmi F, Alayande SO, Olukanni OD (2017) Acid activation of groundnut husk for copper adsorption: kinetics and equilibrium studies. Desalin Water Treat 86:240–251

    Article  Google Scholar 

  3. Brinza L, Nygård CA, Dring MJ, Gavrilescu M, Benning LG (2009) Cadmium tolerance and adsorption by the marine brown alga Fucus vesiculosus from the Irish Sea and the Bothnian Sea. Bioresour Technol 100(5):1727–1733

    Article  CAS  PubMed  Google Scholar 

  4. Ofudje EA, Williams OD, Asogwa KK, Awotula AO (2013) Assessment of Langmuir, Freundlich and Rubunin-Radushhkevich adsorption isotherms in the study of the biosorption of Mn (II) ions from aqueous solution by untreated and acid-treated corn shaft. Int J Sci Eng Res 4(7):1628–1634

    Google Scholar 

  5. Manikandaraja P, Senthilkumaran R (2014) A study on degradation and characterization of heavy metals in industrial effluents waste using Pseudomonas sp. isolated from soil samples. Int J Advan Multi Res 1(1):63–72

    Google Scholar 

  6. Li Y, Hu X, Ren B, Wang Z (2016) Removal of high-concentration Fe (III) by oxidized multiwall carbon nanotubes in a fixed bed column. Am Chem Sci J 10(3):1–9

    Article  Google Scholar 

  7. Shen YS, Wang SL, Huang ST, Tzou YM, Huang JH (2010) Biosorption of Cr (VI) by coconut coir: spectroscopic investigation on the reaction mechanism of Cr (VI) with lignocellulosic material. J Hazard Mater 179:160–165

    Article  CAS  PubMed  Google Scholar 

  8. Tümsek F, Karabacakoğlu B (2012) Nikel (II) iyonlarının sulu çözeltiden granül aktif karbon üzerine adsorpsiyonu. Balıkesir Üniv Fen Bilim Enst derg 14(2):1–6

    Google Scholar 

  9. Tamjidi S, Esmaeili H, Moghadas BK (2019) Application of magnetic adsorbents for removal of heavy metals from wastewater: a review study. Mater Res Express 6(10):102004

    Article  CAS  Google Scholar 

  10. Hemavathy RV, Saravanan A, Kumar PS, Vo DVN, Karishma S, Jeevanantham S (2021) Adsorptive removal of Pb (II) ions onto surface modified adsorbents derived from Cassia fistula seeds: optimization and modelling study. Chemosphere 283:131276

    Article  CAS  PubMed  Google Scholar 

  11. Saravanan A, Kumar PS, Yaashikaa PR, Karishma S, Jeevanantham S, Swetha S (2021) Mixed biosorbent of agro waste and bacterial biomass for the separation of Pb (II) ions from water system. Chemosphere. 277:130236

    Article  CAS  PubMed  Google Scholar 

  12. Azmi SNH, Al-Balushi M, Al-Siyabi F, Al-Hinai N, Khurshid S (2020) Adsorptive removal of Pb (II) ions from groundwater samples in Oman using carbonized Phoenix dactylifera seed (Date stone). J King Saud Univ Sci 32(7):2931–2938

    Article  Google Scholar 

  13. Rakhym AB, Seilkhanova GA, Kurmanbayeva TS (2020) Adsorption of lead (II) ions from water solutions with natural zeolite and chamotte clay. Mater Today: Proc 31:482–485

    Article  CAS  Google Scholar 

  14. Mehdinia A, Heydari S, Jabbari A (2020) Synthesis and characterization of reduced graphene oxide-Fe3O4@ polydopamine and application for adsorption of lead ions: Isotherm and kinetic studies. Mater Chem Phys 239:121964

    Article  CAS  Google Scholar 

  15. Rao RAK, Kashifuddin M (2014) Kinetics and isotherm studies of Cd (II) adsorption from aqueous solution utilizing seeds of bottlebrush plant (Callistemon chisholmii). Appl Water Sci 4:371–383

    Article  CAS  Google Scholar 

  16. Gupta VK, Kumar R, Nayak A, Saleh TA, Barakat MA (2013) Adsorptive removal of dyes from aqueous solution onto carbon nanotubes: a review. Adv Colloid Interf Sci 193:24–34

    Article  Google Scholar 

  17. Canpolat M, Altunkaynak Y, Yavuz Ö (2022) Kimyasal olarak işlenmemiş Midyat taşı kullanılarak sulu çözeltilerden Pb (II) iyonlarının etkin bir şekilde uzaklaştırılması: İzoterm, kinetik ve termodinamik çalışmalar. NÖHÜ Müh Bilim Derg 11(4):1085–1096

    Google Scholar 

  18. Altunkaynak Y, Canpolat M (2022) Ham Portakal Kabuğu ile Sulu Çözeltilerden Mangan (II) İyonlarının Uzaklaştırılması: Denge. Kinetik ve Termodinamik Çalışmalar AKU-FEMÜBİD 22(1):45–56

    Google Scholar 

  19. Saka C, Teğin İ, Kahvecioğlu K (2023) Sulphur-doped carbon particles from almond shells as cheap adsorbent for efficient Cd (II) adsorption. Diam Relat Mater 131:109542

    Article  CAS  Google Scholar 

  20. Onursal N (2022) Removal of Ni(II) ions from aqueous solutions with Siirt Kocpinar mixed type clay investigation of isotherm, thermodynamic and kinetic parameters. Desalin Water Treat 276:150–159

    Article  CAS  Google Scholar 

  21. Dal MC, Onursal N, Arica E, Yavuz Ö (2021) Diyarbakır Karacadağ Kırmızı Tepe Skoryası ile Cu (II) Adsorpsiyon Kinetiğinin İncelenmesi. Dicle univ mühendis Fak mühendis derg 12(2):337–346

    Google Scholar 

  22. Rana A, Kalla P, Verma HK, Mohnot JK (2016) Recycling of dimensional stone waste in concrete: a review. J Clean Prod 135:312–331

    Article  Google Scholar 

  23. Demirel B, Alyamaç KE (2018) Waste marble powder/dust. In: Waste and Supplementary Cementitious Materials in Concrete. Woodhead Publishing, pp 181–197

    Chapter  Google Scholar 

  24. Rabie AM, Abd El-Salam HM, Betiha MA, El-Maghrabi HH, Aman D (2019) Mercury removal from aqueous solution via functionalized mesoporous silica nanoparticles with the amine compound. Egypt J Pet 28:289–296

    Article  Google Scholar 

  25. Teğin İ, Batur MŞ, Yavuz Ö, Saka C (2023) Removal of Cu (II), Pb (II) and Cd (II) metal ions with modified clay composite: kinetics, isotherms and thermodynamics studies. Int J Environ Sci Technol 20(2):1341–1356

    Article  Google Scholar 

  26. Onursal N, Dal MC, Kul AR, Yavuz Ö (2020) Cu (Iı) İyonlarının Doğal Karışık Tipteki Kil İle Sulu Ortamdan Uzaklaştırılması, İzoterm, Kinetik Ve Termodinamik Parametrelerin İncelenmesi. Eurasia j math sci technol Educ 7(9):85–103

    Google Scholar 

  27. Kahvecioğlu K, Teğin İ, Yavuz Ö, Saka C (2023) Phosphorus and oxygen co-doped carbon particles based on almond shells with hydrothermal and microwave irradiation process for adsorption of lead (II) and cadmium (II). Environ Sci Pollut Res 30(13):37946–37960

    Article  Google Scholar 

  28. Bakalár T, Kaňuchová M, Girová A, Pavolová H, Hromada R, Hajduová Z (2020) Characterization of Fe (III) adsorption onto zeolite and bentonite. Int J Environ Res Public Health 17(16):5718–5727

    Article  PubMed  PubMed Central  Google Scholar 

  29. Dim PE, Olu SC, Okafor JO (2020) Kinetic and thermodynamic study of adsorption of Cu (II) and Cr (VI) ion from industrial effluent onto kaolinite clay. J Chem Technol Metall 55(5):1057–1067

    CAS  Google Scholar 

  30. Sejie FP, Nadiye-Tabbiruka MS (2016) Removal of methyl orange (MO) from water by adsorption onto modified local clay (kaolinite). Phys Chem 6(2):39–48

    CAS  Google Scholar 

  31. Sarma GK, Gupta SS, Bhattacharyya KG (2016) Retracted: adsorption of crystal violet on raw and acid-treated montmorillonite, K10, in aqueous suspension. J Environ Manag 171:1–10

    Article  CAS  Google Scholar 

  32. Li J, Zhong Z, Du H, Li Q, Wang N, Zhao H, Huang J (2021) Theoretical study on the adsorption mechanism of PbCl2/CdCl2 by kaolinite during municipal solid waste pyrolysis. Chemosphere. 267:129184

    Article  CAS  PubMed  Google Scholar 

  33. Yu J, Sun L, Xiang J, Hu S, Su S (2013) Kinetic vaporization of heavy metals during fluidized bed thermal treatment of municipal solid waste. Waste Manag 33(2):340–346

    Article  CAS  PubMed  Google Scholar 

  34. Wang SJ, He PJ, Shao LM, Zhang H (2016) Multifunctional effect of Al2O3, SiO2 and CaO on the volatilization of PbO and PbCl2 during waste thermal treatment. Chemosphere 161:242–250

    Article  CAS  PubMed  Google Scholar 

  35. Yu S, Zhang C, Ma L, Fang Q, Chen G (2021) Experimental and DFT studies on the characteristics of PbO/PbCl2 adsorption by Si/Al-based sorbents in the simulated flue gas. J Hazard Mater 407:124742

    Article  CAS  PubMed  Google Scholar 

  36. Dehghani MH, Afsari Sardari S, Afsharnia M, Qasemi M, Shams M (2023) Removal of toxic lead from aqueous solution using a low-cost adsorbent. Sci Rep 13(1):3278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Belviso C, Lucini P, Mancinelli M, Abdolrahimi M, Martucci A, Peddis D et al (2023) Lead, zinc, nickel and chromium ions removal from polluted waters using zeolite formed from bauxite, obsidian and their combination with red mud: behaviour and mechanisms. J Clean Prod 415:137814

    Article  CAS  Google Scholar 

  38. Lu Q, Zhou XY, Wu YW, Mi TG, Liu J, Hu B, Zhao L (2021) Interaction mechanism between cadmium species and SiO2 of municipal solid waste incineration fly ash: effect of HCl. Chem Eng J 425:130604

    Article  CAS  Google Scholar 

  39. Yang Y, Liu J, Wang Z (2020) Reaction mechanisms and chemical kinetics of mercury transformation during coal combustion. Prog Energy Combust Sci 79:100844

    Article  Google Scholar 

  40. Zhang A, Liu J, Zhang Z, Yang Y, Yu Y, Zhao Y (2021) Insights into the mechanism of lead species adsorption over Al2O3 sorbent. J Hazard Mater 413:125371

    Article  CAS  PubMed  Google Scholar 

  41. Altunkaynak Y (2022) Effectively removing Cu (II) and Ni (II) ions from aqueous solutions using chemically non-processed Midyat stone: equivalent, kinetic and thermodynamic studies. J Iran Chem Soc 19(8):3357–3370

    Article  CAS  Google Scholar 

  42. Dim PE, Mustapha LS, Termtanun M, Okafor JO (2021) Adsorption of chromium (VI) and iron (III) ions onto acid-modified kaolinite: isotherm, kinetics and thermodynamics studies. Arab J Chem 14(4):103064

    Article  CAS  Google Scholar 

  43. Fernández-Pazos MT, Garrido-Rodriguez B, Nóvoa-Muñoz JC, Arias-Estévez M, Fernández-Sanjurjo MJ, Núñez-Delgado A, Álvarez E (2013) Cr (VI) adsorption and desorption on soils and biosorbents. Water Air Soil Pollut 224:1–12

    Article  Google Scholar 

  44. De Angelis G, Medeghini L, Conte AM, Mignardi S (2017) Recycling of eggshell waste into low-cost adsorbent for Ni removal from wastewater. J Clean Prod 164:1497–1506

    Article  Google Scholar 

  45. Maged A, Elgarahy AM, Haneklaus NH, Gupta AK, Show PL, Bhatnagar A (2023) Sustainable functionalized smectitic clay-based nano hydrated zirconium oxides for enhanced levofloxacin sorption from aqueous medium. J Hazard Mater 452:131325

    Article  CAS  PubMed  Google Scholar 

  46. Canpolat M (2023) Removing Co (II) and Mn (II) ions effectively from aqueous solutions by means of chemically non-processed Mardin stone waste: equivalent, kinetic, and thermodynamic investigations. Environ Prog Sustain 42:e14042

    Article  CAS  Google Scholar 

  47. Mondal S, Janardhan R, Meena ML, Biswas P (2017) Highly active Cu-Zn-Mg-Al-O catalyst derived from layered double hydroxides (LDHs) precursor for selective hydrogenolysis of glycerol to 1, 2-propanediol. J Environ Chem Eng 5(6):5695–5706

    Article  CAS  Google Scholar 

  48. Li X, Zhang D, Sheng F, Qing H (2018) Adsorption characteristics of copper (II), zinc (II) and mercury (II) by four kinds of immobilized fungi residues ecotoxicol. Environ Saf 147:357–366

    Article  CAS  Google Scholar 

  49. Aksu Z, İşoğlu İA (2005) Removal of copper (II) ions from aqueous solution by biosorption onto agricultural waste sugar beet pulp. Process Biochem 40(9):3031–3044

    Article  CAS  Google Scholar 

  50. Kara I, Tunc D, Sayin F, Akar ST (2018) Study on the performance of metakaolin based geopolymer for Mn (II) and Co (II) removal. Appl Clay Sci 161:184–193

    Article  CAS  Google Scholar 

  51. Mohammed IA, Jawad AH, Abdulhameed AS, Mastuli MS (2020) Physicochemical modification of chitosan with fly ash and tripolyphosphate for removal of reactive red 120 dye: statistical optimization and mechanism study Int. J Biol Macromol 161:503–513

    Article  CAS  Google Scholar 

  52. Vickers NJ (2017) Animal communication: when i’m calling you, will you answer too? Current biol 27(14):713–715

    Article  Google Scholar 

  53. Simha P, Banwasi P, Mathew M, Ganesapillai M (2016) Adsorptive resource recovery from human urine: system design, parametric considerations and response surface optimization. Procedia Eng 148:779–786

    Article  CAS  Google Scholar 

  54. Neolaka YA, Lawa Y, Naat JN, Riwu AA, Iqbal M, Darmokoesoemo H, Kusuma HS (2020) The adsorption of Cr (VI) from water samples using graphene oxide-magnetic (GO-Fe3O4) synthesized from natural cellulose-based graphite (kusambi wood or Schleichera oleosa): study of kinetics, isotherms and thermodynamics. J Mater Res Technol 9(3):6544–6556

    Article  CAS  Google Scholar 

  55. Neolaka YA, Lawa Y, Naat JN, Riwu AAP, Darmokoesoemo H, Supriyanto G, Kusuma HS (2020) A Cr (VI)-imprinted-poly (4-VP-co-EGDMA) sorbent prepared using precipitation polymerization and its application for selective adsorptive removal and solid phase extraction of Cr (VI) ions from electroplating industrial wastewater. React Funct Polym 147:104451

    Article  CAS  Google Scholar 

  56. Abukhadra MR, Dardir FM, Shaban M, Ahmed EA, Soliman MF (2018) Superior removal of Co2+, Cu2+ and Zn2+ contaminants from water utilizing spongy Ni/Fe carbonate–fluorapatite; preparation, application and mechanism. Ecotoxicol Environ Saf 157:358–368

    Article  CAS  PubMed  Google Scholar 

  57. Kragović M, Daković A, Marković M, Krstić J, Gatta GD, Rotiroti N (2013) Characterization of lead sorption by the natural and Fe (III)-modified zeolite. Appl Surf Sci 283:764–774

    Article  Google Scholar 

  58. Man Y, Wang B, Wang J, Slaný M, Yan H, Li P et al (2021) Use of biochar to reduce mercury accumulation in Oryza sativa L: a trial for sustainable management of historically polluted farmlands. Environ Int 153:106527

    Article  CAS  PubMed  Google Scholar 

  59. Khajeh M, Laurent S, Dastafkan K (2013) Nanoadsorbents: classification, preparation, and applications (with emphasis on aqueous media). Chem Rev 113(10):7728–7768

    Article  CAS  PubMed  Google Scholar 

  60. Maged A, El-Fattah HA, Kamel RM, Kharbish S, Elgarahy AM (2023) A comprehensive review on sustainable clay-based geopolymers for wastewater treatment: circular economy and future outlook. Environ Monit Assess 195(6):693

    Article  PubMed  PubMed Central  Google Scholar 

  61. Abo-Farha SA, Abdel-Aal AY, Ashour IA, Garamon SE (2009) Removal of some heavy metal cations by synthetic resin purolite C100. J Hazard Mater 169(1-3):190–194

    Article  CAS  PubMed  Google Scholar 

  62. Jayasree R, Kumar PS, Saravanan A, Hemavathy RV, Yaashikaa PR, Arthi P, Choi KC (2021) Sequestration of toxic Pb (II) ions using ultrasonic modified agro waste: adsorption mechanism and modelling study. Chemosphere. 285:131502

    Article  CAS  PubMed  Google Scholar 

  63. Chu Y, Khan MA, Wang F, Xia M, Lei W, Zhu S (2019) Kinetics and equilibrium isotherms of adsorption of Pb (II) and Cu (II) onto raw and arginine-modified montmorillonite. Adv Powder Technol 30(5):1067–1078

    Article  CAS  Google Scholar 

  64. Xia Y, Yang T, Zhu N, Li D, Chen Z, Lang Q et al (2019) Enhanced adsorption of Pb (II) onto modified hydrochar: modeling and mechanism analysis. Bioresour Technol 288:121593

    Article  CAS  PubMed  Google Scholar 

  65. Altunkaynak Y, Canpolat M, Yavuz Ö (2023) Sulu Çözeltilerden Pb2+ İyonlarının Uzaklaştırılmasında Atık Portakal Kabuklarının Kullanılması: Kinetik ve Termodinamik Çalışmalar. DÜBİTED 11(2):1105–1120

    Article  Google Scholar 

  66. Lima EC, Hosseini-Bandegharaei A, Moreno-Piraján JC, Anastopoulos I (2019) A critical review of the estimation of the thermodynamic parameters on adsorption equilibria. Wrong use of equilibrium constant in the Van’t Hoof equation for calculation of thermodynamic parameters of adsorption. J Mol Liq 273:425–434

    Article  CAS  Google Scholar 

  67. Gupta VK (1998) Equilibrium uptake, sorption dynamics, process development, and column operations for the removal of copper and nickel from aqueous solution and wastewater using activated slag, a low-cost adsorbent. Ind Eng Chem Res 37(1):192–202

    Article  CAS  Google Scholar 

  68. Akpomie KG, Dawodu FA, Adebowale KO (2015) Mechanism on the sorption of heavy metals from binary-solution by a low cost montmorillonite and its desorption potential. Alex Eng J 54(3):757–767

    Article  Google Scholar 

  69. Yusuff AS (2019) Adsorption of hexavalent chromium from aqueous solution by Leucaena leucocephala seed pod activated carbon: equilibrium, kinetic and thermodynamic studies. Arab J Basic Appl Sci 26(1):89–102

    Article  Google Scholar 

Download references

Acknowledgements

The Batman University and Dicle University Science and Technology Application and Research Center (DUPTAM) are sincerely acknowledged by the authors for their assistance.

Author information

Authors and Affiliations

Authors

Contributions

MC: conceptualization, methodology, software, ınvestigation, writing the original draft. YA: validation, data curation, writing—original draft—review & editing, supervision. MA: conceptualization, methodology, data curation. The final manuscript was reviewed and approved by all writers.

Corresponding author

Correspondence to Yalçın Altunkaynak.

Ethics declarations

Ethical approval

This work was carried out by obeying research and ethics rules.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Altunkaynak, Y., Canpolat, M. & Aslan, M. Adsorption of lead (II) ions on kaolinite from aqueous solutions: isothermal, kinetic, and thermodynamic studies. Ionics 29, 4311–4323 (2023). https://doi.org/10.1007/s11581-023-05157-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-023-05157-x

Keywords

Navigation