Skip to main content

Advertisement

Log in

Radiation synthesis strategy of poly(ionic liquid)/MXene gel polymer for supercapacitor electrolyte

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

MXenes have been received considerable attention because of their particular physical and chemical properties in recent. In this work, a novel poly(ionic liquid)/MXene gel polymer electrolyte (PIL/MXene GPE) based on 1-vinyl-3-ethylimidazolium tetrafluoroborate ionic liquid, Ti3C2Tx MXene, and ethylene glycol diacrylate was prepared by a one–step radiation method. The PIL/MXene GPE exhibited good ionic conductivity, thermal stability, and excellent mechanical strength. The maximum compression resistance could reach 59.97 MPa. In addition, the supercapacitor based on the PIL/MXene GPE showed good electrochemical performances and high stability. The specific capacitance retention could reach about 93.02% even over 300 charge–discharge cycles. Based on the above research, the designed PIL/MXene GPE will open a new window and provide an important enlightenment for synthesis and application of the gel polymer electrolytes in future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kuo PL, Tsao CH, Hsu CH et al (2016) A new strategy for preparing oligomeric ionic liquid gel polymer electrolytes for high-performance and nonflammable lithium ion batteries. J Membr Sci 499:462–469. https://doi.org/10.1016/j.memsci.2015.11.007

    Article  CAS  Google Scholar 

  2. Zhang J, Ma C, Liu J et al (2016) Solid polymer electrolyte membranes based on organic/inorganic nanocomposites with star-shaped structure for high performance lithium ion battery. J Membr Sci 509:138–148. https://doi.org/10.1016/j.memsci.2016.02.049

    Article  CAS  Google Scholar 

  3. Shang D, Fu J, Lu Q et al (2018) A novel polyhedral oligomeric silsesquioxane based ionic liquids (POSS-ILs) polymer electrolytes for lithium ion batteries. Solid State Ion 319:247–255. https://doi.org/10.1016/j.ssi.2018.01.050

    Article  CAS  Google Scholar 

  4. Wang Y, Qiu J, Peng J et al (2017) One-step radiation synthesis of gel polymer electrolytes with high ionic conductivity for lithium-ion batteries. J Mater Chem A 5:12393–12399. https://doi.org/10.1039/c7ta02291c

    Article  CAS  Google Scholar 

  5. Lu Q, Dong L, Chen L et al (2020) Inorganic-organic gel electrolytes with 3D cross-linking star-shaped structured networks for lithium ion batteries. Chem Eng J 393:124708. https://doi.org/10.1016/j.cej.2020.124708

    Article  CAS  Google Scholar 

  6. Wu JF, Guo X (2019) MOF-derived nanoporous multifunctional fillers enhancing the performances of polymer electrolytes for solid-state lithium batteries. J Mater Chem A 7:2653–2659. https://doi.org/10.1039/c8ta10124h

    Article  CAS  Google Scholar 

  7. Marr PC, Marr AC (2015) Ionic liquid gel materials: applications in green and sustainable chemistry. Green Chem 18:105–128. https://doi.org/10.1039/c5gc02277k

    Article  Google Scholar 

  8. Zhang X, Kar M, Mendes TC et al (2018) Supported ionic liquid gel membrane electrolytes for flexible supercapacitors. Adv Energy Mater 8:1–8. https://doi.org/10.1002/aenm.201702702

    Article  CAS  Google Scholar 

  9. Pan Q, Gong D, Tang Y (2020) Recent progress and perspective on electrolytes for sodium/potassium-based devices. Energy Stor Mater 31:328–343. https://doi.org/10.1016/j.ensm.2020.06.025

    Article  Google Scholar 

  10. Xie D, Zhang M, Wu Y et al (2020) A flexible dual-ion battery based on sodium-ion quasi-solid-state electrolyte with long cycling life. Adv Funct Mater 30:1906770. https://doi.org/10.1002/adfm.201906770

    Article  CAS  Google Scholar 

  11. Verdier N, Lepage D, Zidani R et al (2020) Cross-linked polyacrylonitrile-based elastomer used as gel polymer electrolyte in li-ion battery. ACS Appl Energy Mater 3:1099–1110. https://doi.org/10.1021/acsaem.9b02129

    Article  CAS  Google Scholar 

  12. Shi J, Yang Y, Shao H (2018) Co-polymerization and blending based PEO/PMMA/P(VDF-HFP) gel polymer electrolyte for rechargeable lithium metal batteries. J Membr Sci 547:1–10. https://doi.org/10.1016/j.memsci.2017.10.033

    Article  CAS  Google Scholar 

  13. Chen G, Zhang F, Zhou Z et al (2018) A flexible dual-ion battery based on PVDF-HFP-modified gel polymer electrolyte with excellent cycling performance and superior rate capability. Adv Energy Mater 8:1–7. https://doi.org/10.1002/aenm.201801219

    Article  CAS  Google Scholar 

  14. Kim HS, Shin JH, Moon SI, Kim SP (2003) Preparation of gel polymer electrolytes using PMMA interpenetrating polymeric network and their electrochemical performances. Electrochim Acta 48:1573–1578. https://doi.org/10.1016/S0013-4686(03)00087-2

    Article  CAS  Google Scholar 

  15. Zhao H, Liu X, Chi Z et al (2021) Designing a new-type PMMA based gel polymer electrolyte incorporating ionic liquid for lithium oxygen batteries with Ru-based Binder-free cathode. Appl Surf Sci 565:150612. https://doi.org/10.1016/j.apsusc.2021.150612

    Article  CAS  Google Scholar 

  16. Li H, Ma XT, Shi JL et al (2011) Preparation and properties of poly(ethylene oxide) gel filled polypropylene separators and their corresponding gel polymer electrolytes for Li-ion batteries. Electrochim Acta 56:2641–2647. https://doi.org/10.1016/j.electacta.2010.12.010

    Article  CAS  Google Scholar 

  17. Awadhia A, Patel SK, Agrawal SL (2006) Dielectric investigations in PVA based gel electrolytes. Prog Cryst Growth Charact Mater 52:61–68. https://doi.org/10.1016/j.pcrysgrow.2006.03.009

    Article  CAS  Google Scholar 

  18. Krishna Jyothi N, Gnana Kiran M, Naveen Kumar V et al (2022) Structural and impedance analysis of PAN-based Na+ ion conducting gel polymer electrolytes for energy storage device application. Mater Today Proc 51:1164–1167. https://doi.org/10.1016/j.matpr.2021.07.122

    Article  CAS  Google Scholar 

  19. Cheng CL, Wan CC, Wang YY (2004) Preparation of porous, chemically cross-linked, PVdF-based gel polymer electrolytes for rechargeable lithium batteries. J Power Sources 134:202–210. https://doi.org/10.1016/j.jpowsour.2004.03.037

    Article  CAS  Google Scholar 

  20. Lu Q, Fu J, Chen L et al (2019) Polymeric polyhedral oligomeric silsesquioxane ionic liquids based solid polymer electrolytes for lithium ion batteries. J Power Sources 414:31–40. https://doi.org/10.1016/j.jpowsour.2018.12.085

    Article  CAS  Google Scholar 

  21. Shi M, Lin T, Wang Y et al (2020) One-step radiation synthesis of novel star-shaped polymeric ionic liquid–POSS gel electrolytes with high ionic conductivity and mechanical properties for supercapacitor. J Mater Sci 55:16347–16359. https://doi.org/10.1007/s10853-020-05162-9

    Article  CAS  Google Scholar 

  22. Qian W, Texter J, Yan F (2017) Frontiers in poly(ionic liquid)s: syntheses and applications. Chem Soc Rev 46:1124–1159. https://doi.org/10.1039/c6cs00620e

    Article  CAS  PubMed  Google Scholar 

  23. Choi JA, Kang Y, Shim H et al (2010) Cycling performance of a lithium-ion polymer cell assembled by in-situ chemical cross-linking with fluorinated phosphorous-based cross-linking agent. J Power Sources 195:6177–6181. https://doi.org/10.1016/j.jpowsour.2009.11.065

    Article  CAS  Google Scholar 

  24. Jamalpour S, Ghahramani M, Ghaffarian SR, Javanbakht M (2021) Improved performance of lithium ion battery by the incorporation of novel synthesized organic-inorganic hybrid nanoparticles SiO2-poly(methyl methacrylate-co-ureidopyrimidinone) in gel polymer electrolyte based on poly (vinylidene fluoride). Polymer 228:123924. https://doi.org/10.1016/j.polymer.2021.123924

    Article  CAS  Google Scholar 

  25. Pan X, Hou Q, Liu L et al (2021) Semiconductor TiO2 ceramic filler for safety-improved composite ionic liquid gel polymer electrolytes. Ionics 27:2045–2051. https://doi.org/10.1007/s11581-020-03850-9

    Article  CAS  Google Scholar 

  26. Li H, Hu M, Cao B et al (2021) Multi-elemental electronic coupling for enhanced hydrogen generation. Small 17:2006617. https://doi.org/10.1002/smll.202006617

    Article  CAS  Google Scholar 

  27. Fan Q, Zhao R, Yi M et al (2021) Ti3C2-MXene composite films functionalized with polypyrrole and ionic liquid-based microemulsion particles for supercapacitor applications. Chem Eng J 428:131107. https://doi.org/10.1016/j.cej.2021.131107

    Article  CAS  Google Scholar 

  28. Wang Y, Wang X, Li X et al (2021) Scalable fabrication of polyaniline nanodots decorated MXene film electrodes enabled by viscous functional inks for high-energy-density asymmetric supercapacitors. Chem Eng J 405:126664. https://doi.org/10.1016/j.cej.2020.126664

    Article  CAS  Google Scholar 

  29. Lv J, Zhang L, Zhu L et al (2021) A fast and mild method to prepare d-Ti3C2Tx/ZnO composites at room temperature with excellent catalytic performance. Appl Surf Sci 558:149863. https://doi.org/10.1016/j.apsusc.2021.149863

    Article  CAS  Google Scholar 

  30. Wu X, Huang B, Lv R et al (2019) Highly flexible and low capacitance loss supercapacitor electrode based on hybridizing decentralized conjugated polymer chains with MXene. Chem Eng J 378:122246. https://doi.org/10.1016/j.cej.2019.122246

    Article  CAS  Google Scholar 

  31. Yao M, Chen Y, Wang Z et al (2020) Boosting gravimetric and volumetric energy density via engineering macroporous MXene films for supercapacitors. Chem Eng J 395:124057. https://doi.org/10.1016/j.cej.2020.124057

    Article  CAS  Google Scholar 

  32. Wang X, Wang X, Chen J et al (2021) Durable sodium battery composed of conductive Ti3C2Tx MXene modified gel polymer electrolyte. Solid State Ion 365:115655. https://doi.org/10.1016/j.ssi.2021.115655

    Article  CAS  Google Scholar 

  33. Chen Z, Li X, Wang D et al (2021) Grafted MXene/polymer electrolyte for high performance solid zinc batteries with enhanced shelf life at low/high temperatures. Energ Environ Sci 14:3492–3501. https://doi.org/10.1039/d1ee00409c

    Article  CAS  Google Scholar 

  34. Wu CB, Hao JY, Deng XM (2007) A novel degradable poly(β-amino ester) and its nano-complex with poly(acrylic acid). Polymer 48:6272–6285. https://doi.org/10.1016/j.polymer.2007.08.026

    Article  CAS  Google Scholar 

  35. Aziz SB, Woo TJ, Kadir MFZ, Ahmed HM (2018) A conceptual review on polymer electrolytes and ion transport models. J Sci-Adv Mater Dev 3:1–17. https://doi.org/10.1016/j.jsamd.2018.01.002

    Article  Google Scholar 

  36. Wang X, Zhou Y (2002) Solid-liquid reaction synthesis of layered machinable ti3AlC2 ceramic. J Mater Chem 12:455–460. https://doi.org/10.1039/b108685e

    Article  CAS  Google Scholar 

  37. Peng C, Yang X, Li Y et al (2016) Hybrids of two-dimensional Ti3C2 and TiO2 exposing {001} facets toward enhanced photocatalytic activity. ACS Appl Mater Interfaces 8:6051–6060. https://doi.org/10.1021/acsami.5b11973

    Article  CAS  PubMed  Google Scholar 

  38. Ren S, Xu JL, Cheng L et al (2021) Amine-assisted delaminated 2D Ti3C2T xMXenes for high specific capacitance in neutral aqueous electrolytes. ACS Appl Mater Interfaces 13:35878–35888. https://doi.org/10.1021/acsami.1c06161

    Article  CAS  PubMed  Google Scholar 

  39. Ghosh K, Pumera M (2021) MXene and MoS3−x Coated 3D-printed hybrid electrode for solid-state asymmetric supercapacitor. Small Methods 5:1–15. https://doi.org/10.1002/smtd.202100451

    Article  CAS  Google Scholar 

  40. Naguib M, Kurtoglu M, Presser V et al (2011) Two-dimensional nanocrystals produced by exfoliation of Ti 3AlC 2. Adv Mater 23:4248–4253. https://doi.org/10.1002/adma.201102306

    Article  CAS  PubMed  Google Scholar 

  41. Zhang Y, Ruan K, Shi X et al (2021) Ti3C2Tx/rGO porous composite films with superior electromagnetic interference shielding performances. Carbon 175:271–280. https://doi.org/10.1016/j.carbon.2020.12.084

    Article  CAS  Google Scholar 

  42. Liu J, Khanam Z, Ahmed S et al (2021) A study of low-temperature solid-state supercapacitors based on Al-ion conducting polymer electrolyte and graphene electrodes. J Power Sources 488:229461. https://doi.org/10.1016/j.jpowsour.2021.229461

    Article  CAS  Google Scholar 

  43. Han D, Li X, Peng J et al (2016) A new imidazolium-based polymeric ionic liquid gel with high adsorption capacity for perrhenate. RSC Adv 6:69052–69059. https://doi.org/10.1039/c6ra12239f

    Article  CAS  Google Scholar 

  44. Wang Z, Zhang J, Liu J et al (2021) 3D Printable, highly stretchable, superior stable ionogels based on poly(ionic liquid) with hyperbranched polymers as macro-cross-linkers for high-performance strain sensors. ACS Appl Mater Interfaces 13:5614–5624. https://doi.org/10.1021/acsami.0c21121

    Article  CAS  PubMed  Google Scholar 

  45. He C, Sun S, Peng H et al (2016) Poly(ionic liquid)-assisted reduction of graphene oxide to achieve high-performance composite electrodes. Compos Part B Eng 106:81–87. https://doi.org/10.1016/j.compositesb.2016.09.022

    Article  CAS  Google Scholar 

  46. Chen S, Xiang Y, Banks MK et al (2018) Polyoxometalate-coupled MXene nanohybrid: via poly(ionic liquid) linkers and its electrode for enhanced supercapacitive performance. Nanoscale 10:20043–20052. https://doi.org/10.1039/c8nr05760e

    Article  CAS  PubMed  Google Scholar 

  47. Liu N, Li Q, Wan H et al (2022) High-temperature stability in air of Ti3C2Tx MXene-based composite with extracted bentonite. Nat Commun 13:1–10. https://doi.org/10.1038/s41467-022-33280-2

    Article  CAS  Google Scholar 

  48. Xie K, Dong Z, Zhao L (2021) Radiation synthesis of ionic liquid–functionalized silica-based adsorbents: a preliminary investigation on its application for removal of ReO4− as an analog for TcO4−. Environ Sci Pollut Res 28:17752–17762. https://doi.org/10.1007/s11356-020-12078-z

    Article  CAS  Google Scholar 

  49. Li T, Liu F, Yang X et al (2022) Muscle-mimetic highly tough, conductive, and stretchable poly(ionic liquid) liquid crystalline ionogels with ultrafast self-healing, super adhesive, and remarkable shape memory properties. ACS Appl Mater Interfaces 14:29261–29272. https://doi.org/10.1021/acsami.2c06662

    Article  CAS  PubMed  Google Scholar 

  50. Sen S, Goodwin SE, Barbará PV et al (2021) Gel-polymer electrolytes based on poly(ionic liquid)/ionic liquid networks. ACS Appl Polym Mater 3:200–208. https://doi.org/10.1021/acsapm.0c01042

    Article  CAS  Google Scholar 

  51. Li H, Feng Z, Zhao K et al (2019) Chemically crosslinked liquid crystalline poly(ionic liquid)s/halloysite nanotubes nanocomposite ionogels with superior ionic conductivity, high anisotropic conductivity and a high modulus. Nanoscale 11:3689–3700. https://doi.org/10.1039/c8nr09030k

    Article  CAS  PubMed  Google Scholar 

  52. Li M, Yang B, Wang L et al (2013) New polymerized ionic liquid (PIL) gel electrolyte membranes based on tetraalkylammonium cations for lithium ion batteries. J Membr Sci 447:222–227. https://doi.org/10.1016/j.memsci.2013.07.007

    Article  CAS  Google Scholar 

  53. Döbbelin M, Azcune I, Bedu M et al (2012) Synthesis of pyrrolidinium-based poly(ionic liquid) electrolytes with poly(ethylene glycol) side chains. Chem Mater 24:1583–1590. https://doi.org/10.1021/cm203790z

    Article  CAS  Google Scholar 

  54. Huang T, Long MC, Wang XL et al (2019) One-step preparation of poly(ionic liquid)-based flexible electrolytes by in-situ polymerization for dendrite-free lithium ion batteries. Chem Eng J 375:122062. https://doi.org/10.1016/j.cej.2019.122062

    Article  CAS  Google Scholar 

  55. Yang YJ, Chen S, Jiang C et al (2023) Assembly of flower-like Mn3O4/NiCo-LDH@carbon nanotube nanocomposites on Ni foam for binder-free capacitor electrode. J Alloys Compd 930:167466. https://doi.org/10.1016/j.jallcom.2022.167466

    Article  CAS  Google Scholar 

  56. Liu Q, Zhou J, Song C et al (2020) 2.2V high performance symmetrical fiber-shaped aqueous supercapacitors enabled by “water-in-salt” gel electrolyte and N-Doped graphene fiber. Energy Stor Mater 24:495–503. https://doi.org/10.1016/j.ensm.2019.07.008

    Article  Google Scholar 

  57. Yang YJ, Cheng Y, Liu M et al (2021) The facile conversion of iron foam into copper-coated 3D porous cobalt ferrite/iron foam for high-performance asymmetric hybrid supercapacitor. J Alloys Compd 888:161603. https://doi.org/10.1016/j.jallcom.2021.161603

    Article  CAS  Google Scholar 

  58. Liang K, Matsumoto RA, Zhao W et al (2021) Engineering the interlayer spacing by pre-intercalation for high performance supercapacitor MXene electrodes in room temperature ionic liquid. Adv Funct Mater 31:2104007. https://doi.org/10.1002/adfm.202104007

    Article  CAS  Google Scholar 

  59. Yang YJ, Chen S, Wang N et al (2022) One-step construction of Ni2S-coated graphene nanosheets with flower-like architecture as binder-free electrode for efficient supercapacitor applications. Diamond Relat Mater 129:109380. https://doi.org/10.1016/j.diamond.2022.109380

    Article  CAS  Google Scholar 

Download references

Funding

Some part of this work is supported by the National Natural Science Foundation of China (No.11875138, No.12005071).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to this work.

Corresponding authors

Correspondence to Wei Qi or Long Zhao.

Ethics declarations

Competing interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, W., Jiang, J., Liu, Y. et al. Radiation synthesis strategy of poly(ionic liquid)/MXene gel polymer for supercapacitor electrolyte. Ionics 29, 2865–2875 (2023). https://doi.org/10.1007/s11581-023-05060-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-023-05060-5

Keywords

Navigation