Skip to main content
Log in

Submicron single-crystal structure for enhanced structural stability of LiNi0.8Mn0.2O2 Ni-rich cobalt-free cathode materials

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Because of its high specific capacity and low cost, high nickel cobalt-free layered oxide is regarded as an important next-generation lithium ion cathode material. However, its commercialization is difficult due to poor cycle performance and thermal unstability. Submicron single-crystal LiNi0.8Mn0.2O2 synthesized by double jet mill has unique morphology and dispersibility, which enhances the structural stability of the material. The results show that the specific discharge capacity and initial coulombic efficiency of single-crystal submicron LiNi0.8Mn0.2O2 are obviously higher than those of polycrystalline LiNi0.8Mn0.2O2, the capacity of which is 170.5 mAh·g−1 under 1 C. And the specific discharge capacity after 200 cycles is obviously higher than that of polycrystalline LiNi0.8Mn0.2O2, with the respective values under 5 C high current being 146.0 mAh·g−1 and 119.3 mAh·g−1. The enhancement of cycle and rate performance of single-crystal LiNi0.8Mn0.2O2 structure can be attributed to its unique morphology and stable structure, which can reduce microcracks, surface polarization, irreversible phase transition, surface side reactions, and so on. In addition, the submicron single-crystal LiNi0.8Mn0.2O2 has a lower Ni2+/Li+ cation mixing and a shorter Li+ diffusion migration path, which contributes to the improvement of rate performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Muralidharan N, Self E C, Dixit M et al (2022) Next‐generation cobalt‐free cathodes — a prospective solution to the battery industry's cobalt problem. Adv Energy Mater 12(9)

  2. Liu Y, Wu H, Li K et al (2020) Cobalt-free core-shell structure with high specific capacity and long cycle life as an alternative to Li[Ni0.8Mn0.1Co0.1]O2. J ElectrochemSoc 167(12)

  3. Park G-T, Yoon DR, Kim U-H et al (2021) Ultrafine-grained Ni-rich layered cathode for advanced Li-ion batteries. Energy Environ Sci 14(12):6616–6626

    Article  CAS  Google Scholar 

  4. Jiang M, Danilov DL, Eichel RA et al (2021) A review of degradation mechanisms and recent achievements for Ni‐rich cathode‐based Li‐ion batteries. Adv Energy Mater 11(48)

  5. (2021) Elucidating and mitigating high-voltage degradation cascades in cobalt-free LiNiO2 lithium-ion battery cathodes. Adv Mater

  6. Zhang S, Gao P, Wang Y et al (2021) Cobalt-free concentration-gradient Li[Ni0.9Mn0.1]O2 cathode material for lithium-ion batteries. J Alloys Compd 885:161005-

    Article  CAS  Google Scholar 

  7. Li G, Rao X, Yao W et al (2022) Co-modification of conductive graphite and Zr doping to enhance the Li-storage properties of Ni-rich binary cathode material. Ionics 28(3):1055–1064

    Article  CAS  Google Scholar 

  8. Ran A, Chen S, Cheng M et al (n.d) A single-crystal nickel-rich material as a highly stable cathode for lithium-ion batteries. J Mater Chem A.

  9. Lu Nie ZW, Xiaowen Z, Shaojie C, Yingjie H, Haojie Z, Tianyi G, Yue Z, Lei D, Franklin K, Yi Y, Wei L (2021) Cation/anion Codoped and cobalt-free Li-rich layered cathode for high-performance Li-ion batteries. Nano letters 21(19):8370–8377

    Article  PubMed  Google Scholar 

  10. Li L, Yu J, Darbar D et al (2019) Atomic-scale mechanisms of enhanced electrochemical properties of Mo-doped Co-free layered oxide cathodes for lithium-ion batteries. ACS Energy Lett 4(No.10):2540–2546

    Article  CAS  Google Scholar 

  11. Dai P, Kong X, Yang H et al (2022) Single-crystal Ni-rich layered LiNi0.9Mn0.1O2 enables superior performance of Co-free cathodes for lithium-ion batteries. ACS Sustain Chem Eng 10(No.14):4381–4390

    Article  CAS  Google Scholar 

  12. Ge WJ, Li X, Wang H et al (2016) Multifunctional modification of Li[Ni0.5Co0.2Mn0.3]O2 with NH4VO3 as a high performance cathode material for lithium ion batteries. J Alloys Compd 594–603

  13. Choi CM, Park JH, Sun YK et al (2021) Ultra-stable cycling of multi-doped (Zr,B) Li[Ni(0.885)Co(0.100)Al(0.015)] O2 cathode. J Power Sources (Nov.30):513.

  14. Bi Y, Tao J, Yuqin WuL, Yaobin Xu, Enyuan H, Bingbin W, Jiangtao H, Chongmin W, Ji-Guang Z, Yue Q, Jie X (2020) Reversible planar gliding and microcracking in a single-crystalline Ni-rich cathode[J]. Science 370(6522):1313–1317

    Article  CAS  PubMed  Google Scholar 

  15. Aishova A, Park GT, Yoon CS et al (2020) Cobalt-free high-capacity Ni-rich layered Li[Ni(0.9)Mn(0.1)]O2 cathode. Adv Energy Mater 10(4):1903179.1-1903179.9

    Article  Google Scholar 

  16. Thi Bich Tran T, Park E-J, Kim H-I et al (2022) High rate performance of lithium-ion batteries with Co-free LiNiO2 cathod. Mater Lett 316.

  17. Ulu Okudur F, Mylavarapu S K, Safari M et al (2022) LiNi0.5Mn1.5O4-δ (LNMO) as Co-free cathode for lithium ion batteries via solution-gel synthesis: particle size and morphology investigation. J Alloys Compd 892.

  18. GuofengJia FL, Jue W, Suqin L, Yuliang Y (2021) Dual substitution strategy in Co-free layered cathode materials for superior lithium ion batteries. ACS Appl Mater Interfaces 13(No.16):18733–18742

    Article  Google Scholar 

  19. Lu Y, Zhu T, Mcshane E et al (2022) Single-crystal LiNixMnyCo1-x+yO2 cathodes for extreme fast charging. Small 12:18

    Google Scholar 

  20. Haifeng, Yugang, Yanjie et al (2019) 110th Anniversary: Concurrently coating and doping high-valence vanadium in nickel-rich lithiated oxides for high-rate and stable lithium-ion batteries. Ind Eng Chem Res (58–10).

  21. Wu C, Cao S, Xie X et al (2022) Architecture and performance of anion-doped Co-free lithium-rich cathode material with nano-micron combined morphology. Chem Eng J 429:132141-

    Article  CAS  Google Scholar 

  22. Brow R, Donakowski A, Mesnier A et al (2022) Mechanical pulverization of Co-free nickel-rich cathodes for improved high-voltage cycling of lithium-ion batteries. ACS Appl Energy Mater 5(No.6):6996–7005

    Article  CAS  Google Scholar 

  23. Wang Q, Peng D, Chen Y et al (2018) A facile surfactant-assisted self-assembly of LiFePO4 /graphene composites with improved rate performance for lithium ion batteries. J Electroanal Chem 818:68–75

    Article  CAS  Google Scholar 

  24. Yanxia S, Chunxi H, Yue S et al (2020) Improved lithium ion diffusion and stability of a LiNi0.8Co0.1Mn0.1O2 cathode via the synergistic effect of Na and Mg dual-metal cations for lithium ion battery. J Electrochem Soc 167(No.2):020522

    Article  Google Scholar 

  25. Ou L, Nong S, Yang R et al (2022) Multi-role surface modification of single-crystalline nickel-rich lithium nickel cobalt manganese oxides cathodes with WO3 to improve performance for lithium-ion batteries. Nanomaterials Vol.12(No.8).

  26. Liu T, Yu L, Liu J et al (2021) Understanding Co roles towards developing Co-free Ni-rich cathodes for rechargeable batteries. Nat Energy 6:277–286

    Article  CAS  Google Scholar 

  27. Wu C, Cao S, Xie X et al (2022) Architecture and performance of anion-doped Co-free lithium-rich cathode material with nano-micron combined morphology. Chem Eng J Vol.429.

  28. Li H, Rao W, Gu Z et al (2021) Nano-grinding derived high-performance Li1.2Ni0.13Co0.13Mn0.54O2 cathode material: from kilogram-scale synthesis to its pouch cell. Ionics 27(No.2):491–506

    Article  CAS  Google Scholar 

  29. Koshika Y, Kaneda H, Yoshio S et al (2022) Precursor morphology control and electrochemical properties of LiNi0.35Mn0.30Co0.35O2 as a Li-ion battery positive electrode material. ACS Appl Energy Mater 5(No.7):8169–8177

    Article  CAS  Google Scholar 

  30. Ko S, Lee S, Lee C et al (2014) A Co-free layered LiNi0.7Mn0.3O2 cathode material for high-energy and long-life lithium-ion batteries. J Alloys Compd 613:96–101

    Article  CAS  Google Scholar 

  31. Zhang S, Gao P, Wang Y et al (2021) Cobalt-free concentration-gradient Li[Ni0.9Mn0.1]O2 cathode material for lithium-ion batteries. J Alloys Compd 885.

  32. Saleem A, Hussain A, Ashfaq MZ et al (2022) A well-controlled cracks and gliding-free single-crystal Ni-rich cathode for long-cycle-life lithium-ion batteries. J Alloy Compd 924:166375

    Article  CAS  Google Scholar 

  33. Ma R, Zhao Z, Fu J et al (2020) Tuning cobalt-free nickel-rich layered LiNi0.9Mn0.1O2 cathode material for lithium-ion batteries. ChemElectroChem 7(No.12):2637–2642

    Article  CAS  Google Scholar 

  34. Park G-T, Namkoong B, Kim S-B et al (2022) Introducing high-valence elements into cobalt-free layered cathodes for practical lithium-ion batteries. Nature Energy 7(No.10):946–954

    Article  CAS  Google Scholar 

  35. Zhang J, He H, Wang X et al (2022) A new modification strategy for improving the electrochemical performance of high-nickel cathode material: V2O5 particles anchored on rGO sheets as a dual coating layer. Appl Surf Sci 589:152878

    Article  CAS  Google Scholar 

  36. He X, Han G, Lou S et al (2019) Improved electrochemical performance of LiNi0.8Co0.15Al0.05O2 cathode material by coating of graphene nanodots. J Electrochem Soc 166(No.6):A1038–A1044

    Article  CAS  Google Scholar 

  37. Fan X, Hu G, Zhang B et al (2020) Crack-free single-crystalline Ni-rich layered NCM cathode enable superior cycling performance of lithium-ion batteries. Nano Energy 70(No.0):104450

    Article  CAS  Google Scholar 

  38. Soloy A, Flahaut D, Allouche J et al (2022) Effect of particle size on LiNi0.6Mn0.2Co0.2O2 layered oxide performance in Li-ion batteries. ACS Appl Energy Mater 5(No.5):5617–5632

    Article  CAS  Google Scholar 

  39. Nagarajan S, Hwang S, Balasubramanian M et al (2021) Mixed cationic and anionic redox in Ni and Co free chalcogen-based cathode chemistry for Li-ion batteries. J Am Chem Soc 143(No.38):15732–15744

    Article  CAS  PubMed  Google Scholar 

  40. Cheng X, Wei H, Hao W et al (2019) A cobalt-free Li(Li0.16Ni0.19Fe0.18Mn0.46)O2 cathode for lithium-ion batteries with anionic redox reactions. ChemSusChem 12(No.6):1162–1168

    Article  CAS  PubMed  Google Scholar 

  41. Flamary-Mespoulie F, Boulineau A, Martinez H et al (2020) Lithium-rich layered titanium sulfides: Cobalt- and Nickel-free high capacity cathode materials for lithium-ion batteries. Energy Storage Mater 26:213–222

    Article  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (51874151), the National Natural Science Foundation of China (5187041642), the Scientific Research Foundation for Universities from the Education Bureau of Jiangxi Province (GJJ170510), the Natural Science Foundation of Jiangxi Province (20151BBE50106), and the Jiangxi University of Science and Technology (NSFJ2014-G13, Jxxjbs12005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shengwen Zhong.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 544 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xia, D., Hu, S., Ding, N. et al. Submicron single-crystal structure for enhanced structural stability of LiNi0.8Mn0.2O2 Ni-rich cobalt-free cathode materials. Ionics 29, 1699–1709 (2023). https://doi.org/10.1007/s11581-023-04941-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-023-04941-z

Keywords

Navigation