Skip to main content
Log in

Preparation of highly dispersed FeNx active sites for oxygen reduction reaction electrocatalyst by electrospinning and complexation

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

The development of high-efficiency oxygen reduction reaction (ORR) catalysts is crucial to the advancement of fuel cell technology. Herein, a flexible and free-standing carbon fiber membrane immobilized with atomically dispersed Fe-Nx@NC catalyst is synthesized via electrospinning methodology using suitable complexing agents. A major advantage of the newly designed intertwined fibers is that a highly open structure with abundant nanopores increases gas transportation, electrolyte infiltration, and electron transfer and exposes a high concentration of FeNx sites embedded in the carbon matrix. And Fe4N nanoparticles are generated during pyrolysis and dispersed on carbon fibers upon pyrolysis treatment at 800 °C and co-exist with numerous formed Fe–Nx moieties in the carbon matrix, being evidenced by using X-ray absorption and photoelectron spectroscopy. These factors contribute to excellent ORR activities of FeNx sites. As an ORR catalysts, the as-synthesized Fe-Nx@NC catalyst delivered a more positive half-wave potential of 0.90 V compared to commercial Pt/C. Based on the analyses of the scanning electron microscopy (SEM), the transmission electron microscopy (TEM), X-ray diffractometer (XRD), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy, combined with the density functional theory (DFT) calculations, the generation of FeNx active sites and the formation of the four-coordinate structure of Fe because of the existence of nitrogen-containing complexes were explained, and the catalyst also shows the higher onset potential and half-wave potential in electrochemical tests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Ye W, Chen S, Lin Y, Yang L, Chen S, Zheng X, Qi Z, Wang C, Long R, Chen M, Zhu J, Gao P, Song L, Jiang J, Xiong Y (2019) Precisely tuning the number of Fe atoms in clusters on N-doped carbon toward acidic oxygen reduction reaction. Chem 5(11):2865–2878

    Article  CAS  Google Scholar 

  2. Chen C, Kang Y, Huo Z, Zhu Z, Huang W, Xin HL, Snyder JD, Li D, Herron JA, Mavrikakis M, Chi M, More KL, Li Y, Markovic NM, Somorjai GA, Yang P, Stamenkovic VR (2014) Highly crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces. Science 343(6177):1339–1343

    Article  CAS  PubMed  Google Scholar 

  3. Bu L, Zhang N, Guo S, Zhang X, Li J, Yao J, Wu T, Lu G, Ma J-Y, Su D, Huang X (2016) Biaxially strained PtPb/Pt core/shell nanoplate boosts oxygen reduction catalysis. Science 354(6318):1410–1414

    Article  CAS  PubMed  Google Scholar 

  4. Stamenkovic VR, Fowler B, Mun BS, Wang G, Ross PN, Lucas CA, Marković NM (2007) Improved oxygen reduction activity on Pt<sub>3</sub>Ni(111) via increased surface site availability. Science 315(5811):493–497

    Article  CAS  PubMed  Google Scholar 

  5. Li M, Zhao Z, Cheng T, Fortunelli A, Chen C-Y, Yu R, Zhang Q, Gu L, Merinov BV, Lin Z, Zhu E, Yu T, Jia Q, Guo J, Zhang L, Goddard WA, Huang Y, Duan X (2016) Ultrafine jagged platinum nanowires enable ultrahigh mass activity for the oxygen reduction reaction. Science 354(6318):1414–1419

    Article  CAS  PubMed  Google Scholar 

  6. Zou S, Li J, Wu X, Lu Y, Liu X, Dong D (2021) Electrospun N-doped carbon nanofibers decorated with Fe3C nanoparticles as highly active oxygen reduction electrocatalysts for rechargeable Zn–air batteries. Chem Phys Lett 778:138769

    Article  CAS  Google Scholar 

  7. Wang D, Yang P, Liu L, Wang W, Chen Z (2022) Atomically dispersed metal-nitrogen-carbon electrocatalysts for oxygen reduction reaction: from synthesis strategies to activity engineering. Mater Today Energy 26:101017

    Article  Google Scholar 

  8. Wang D, Hu G, Yang P, Pan X, Xu H, Liu L, Zhang J, An M (2020) Using DMH as a complexing agent for pulse electrodeposition of platinum nanoparticles towards oxygen reduction reaction. Ionics 26(7):3473–3482

    Article  CAS  Google Scholar 

  9. Yin H, Dou Y, Chen S, Zhu Z, Liu P, Zhao H (2020) 2D electrocatalysts for converting earth-abundant simple molecules into value-added commodity chemicals: recent progress and perspectives. Adv Mater 32(18):e1904870

    Article  PubMed  Google Scholar 

  10. Zhang H, Liu G, Shi L, Ye J (2018) Single-atom catalysts: emerging multifunctional materials in heterogeneous catalysis. Adv Energy Mater 8(1):1701343

    Article  Google Scholar 

  11. Yang H, Li Z, Kou S, Lu G, Liu Z (2020) A complex-sequestered strategy to fabricate Fe single-atom catalyst for efficient oxygen reduction in a broad pH-range. Appl Catal B: Environ 278:119270

    Article  CAS  Google Scholar 

  12. Chen Y, Ji S, Chen C, Peng Q, Wang D, Li Y (2018) Single-atom catalysts: synthetic strategies and electrochemical applications. Joule 2(7):1242–1264

    Article  CAS  Google Scholar 

  13. Hai X, Zhao X, Guo N, Yao C, Chen C, Liu W, Du Y, Yan H, Li J, Chen Z, Li X, Li Z, Xu H, Lyu P, Zhang J, Lin M, Su C, Pennycook SJ, Zhang C, Xi S, Lu J (2020) Engineering local and global structures of single Co atoms for a superior oxygen reduction reaction. ACS Catal 10(10):5862–5870

    Article  CAS  Google Scholar 

  14. Zhu Y, Li J, Chen Y, Zou J, Cheng Q, Chen C, Hu W, Zou L, Zou Z, Yang B, Yang H (2021) Switching the oxygen reduction reaction pathway via tailoring the electronic structure of FeN4/C catalysts. ACS Catal 11(21):13020–13027

    Article  CAS  Google Scholar 

  15. Cheng Q, Han S, Mao K, Chen C, Yang L, Zou Z, Gu M, Hu Z, Yang H (2018) Co nanoparticle embedded in atomically-dispersed Co-N-C nanofibers for oxygen reduction with high activity and remarkable durability. Nano Energy 52:485–493

    Article  CAS  Google Scholar 

  16. Lin Y, Liu K, Chen K, Xu Y, Li H, Hu J, Lu Y-R, Chan T-S, Qiu X, Fu J, Liu M (2021) Tuning charge distribution of FeN4 via external N for enhanced oxygen reduction reaction. ACS Catal 11(10):6304–6315

    Article  CAS  Google Scholar 

  17. Wang W, Jia Q, Mukerjee S, Chen S (2019) Recent insights into the oxygen-reduction electrocatalysis of Fe/N/C materials. ACS Catal 9(11):10126–10141

    Article  CAS  Google Scholar 

  18. Guo J, Huo J, Liu Y, Wu W, Wang Y, Wu M, Liu H, Wang G (2019) Nitrogen-doped porous carbon supported nonprecious metal single-atom electrocatalysts: from synthesis to application. Small Methods 3(9):1900159

    Article  Google Scholar 

  19. Osmieri L, Cullen DA, Chung HT, Ahluwalia RK, Neyerlin KC (2020) Durability evaluation of a Fe–N–C catalyst in polymer electrolyte fuel cell environment via accelerated stress tests. Nano Energy 78:105209

    Article  CAS  Google Scholar 

  20. He Y, Guo H, Hwang S, Yang X, He Z, Braaten J, Karakalos S, Shan W, Wang M, Zhou H, Feng Z, More KL, Wang G, Su D, Cullen DA, Fei L, Litster S, Wu G (2020) Single cobalt sites dispersed in hierarchically porous nanofiber networks for durable and high-power PGM-free cathodes in fuel cells. Adv Mater 32(46):e2003577

    Article  PubMed  Google Scholar 

  21. Zhang X, Guo S, Qin Y, Li C (2021) Functional electrospun nanocomposites for efficient oxygen reduction reaction. Chem Res Chin Univ 37(3):379–393

    Article  CAS  Google Scholar 

  22. Ao X, Zhang W, Li Z, Lv L, Ruan Y, Wu H-H, Chiang W-H, Wang C, Liu M, Zeng XC (2019) Unraveling the high-activity nature of Fe–N–C electrocatalysts for the oxygen reduction reaction: the extraordinary synergy between Fe–N4 and Fe4N. J Mater Chem A 7(19):11792–11801

    Article  CAS  Google Scholar 

  23. Xie X, Peng L, Yang H, Waterhouse GIN, Shang L, Zhang T (2021) MIL-101-derived mesoporous carbon supporting highly exposed Fe single-atom sites as efficient oxygen reduction reaction catalysts. Adv Mater 33(23):e2101038

    Article  PubMed  Google Scholar 

  24. Wang Q, Yang Y, Sun F, Chen G, Wang J, Peng L, Chen WT, Shang L, Zhao J, Sun-Waterhouse D, Zhang T, Waterhouse GIN (2021) Molten NaCl-assisted synthesis of porous Fe-N-C electrocatalysts with a high density of catalytically accessible FeN4 active sites and outstanding oxygen reduction reaction performance. Adv Energy Mater 11(19):2100219

    Article  CAS  Google Scholar 

  25. Mooste M, Kibena-Põldsepp E, Vassiljeva V, Merisalu M, Kook M, Treshchalov A, Kisand V, Uibu M, Krumme A, Sammelselg V, Tammeveski K (2019) Electrocatalysts for oxygen reduction reaction based on electrospun polyacrylonitrile, styrene–acrylonitrile copolymer and carbon nanotube composite fibres. J Mater Sci 54(17):11618–11634

    Article  CAS  Google Scholar 

  26. Yang L, Zhang X, Yu L, Hou J, Zhou Z, Lv R (2021) Atomic Fe–N4/C in flexible carbon fiber membrane as binder-free air cathode for Zn–air batteries with stable cycling over 1000 h. Adv Mater 34(5):2105410

    Article  Google Scholar 

  27. Li G-L, Cao S, Lu Z-F, Wang X, Yan Y, Hao C (2022) FePc nanoclusters modified NiCo layered double hydroxides in parallel with Ti3C2 MXene as a highly efficient and durable bifunctional oxygen electrocatalyst for zinc-air batteries. Appl Surf Sci 591:153142

    Article  CAS  Google Scholar 

  28. Li J, Zhang H, Samarakoon W, Shan W, Cullen DA, Karakalos S, Chen M, Gu D, More KL, Wang G, Feng Z, Wang Z, Wu G (2019) Thermally driven structure and performance evolution of atomically dispersed FeN4 sites for oxygen reduction. Angew Chem Int Ed Engl 58(52):18971–18980

    Article  CAS  PubMed  Google Scholar 

  29. Huang S, Hu B, Zhao S, Zhang S, Wang M, Jia Q, He L, Zhang Z, Du M (2022) Multiple catalytic sites of Fe-N and Fe-N-C single atoms embedded N-doped carbon heterostructures for high-efficiency removal of malachite green. Chem Eng J 430:132933

    Article  CAS  Google Scholar 

  30. Zhu C, Shi Q, Xu BZ, Fu S, Wan G, Yang C, Yao S, Song J, Zhou H, Du D, Beckman SP, Su D, Lin Y (2018) Hierarchically porous M-N–C (M = Co and Fe) single-atom electrocatalysts with robust MNx active moieties enable enhanced ORR performance. Adv Energy Mater 8(29):1801956

    Article  Google Scholar 

  31. Chen K, Liu K, An P, Li H, Lin Y, Hu J, Jia C, Fu J, Li H, Liu H, Lin Z, Li W, Li J, Lu YR, Chan TS, Zhang N, Liu M (2020) Iron phthalocyanine with coordination induced electronic localization to boost oxygen reduction reaction. Nat Commun 11(1):4173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kumar K, Asset T, Li X, Liu Y, Yan X, Chen Y, Mermoux M, Pan X, Atanassov P, Maillard F, Dubau L (2020) Fe–N–C electrocatalysts’ durability: effects of single atoms’ mobility and clustering. ACS Catal 11(2):484–494

    Article  Google Scholar 

  33. Zhu G, Qi Y, Liu F, Ma S, Xiang G, Jin F, Liu Z, Wang W (2021) Reconstructing 1D Fe single-atom catalytic structure on 2D graphene film for high-efficiency oxygen reduction reaction. Chemsuschem 14(3):866–875

    Article  CAS  PubMed  Google Scholar 

  34. Yang LJ, Shui JL, Du L, Shao YY, Liu J, Dai LM, Hu Z (2019) Carbon-based metal-free ORR electrocatalysts for fuel cells: past, present, and future. Adv Mater 31(13):1804799

    Article  Google Scholar 

  35. Jiao L, Li J, Richard LL, Sun Q, Stracensky T, Liu E, Sougrati MT, Zhao Z, Yang F, Zhong S, Xu H, Mukerjee S, Huang Y, Cullen DA, Park JH, Ferrandon M, Myers DJ, Jaouen F, Jia Q (2021) Chemical vapour deposition of Fe-N-C oxygen reduction catalysts with full utilization of dense Fe-N4 sites. Nat Mater 20(10):1385–1391

    Article  CAS  PubMed  Google Scholar 

  36. Xia D, Yang X, Xie L, Wei Y, Jiang W, Dou M, Li X, Li J, Gan L, Kang F (2019) Direct growth of carbon nanotubes doped with single atomic Fe–N4 active sites and neighboring graphitic nitrogen for efficient and stable oxygen reduction electrocatalysis. Adv Funct Mater 29(49):1906174

    Article  CAS  Google Scholar 

  37. van Dommele S, Romero-Izquirdo A, Brydson R, de Jong KP, Bitter JH (2008) Tuning nitrogen functionalities in catalytically grown nitrogen-containing carbon nanotubes. Carbon 46(1):138–148

    Article  Google Scholar 

  38. Miao Q, Yang S, Xu Q, Liu M, Wu P, Liu G, Yu C, Jiang Z, Sun Y, Zeng G (2022) Constructing synergistic Zn-N4 and Fe-N4 O dual-sites from the COF@MOF derived hollow carbon for oxygen reduction reaction. Small Struct 3(4):2100225

    Article  CAS  Google Scholar 

  39. Wang X, Jia Y, Mao X, Liu D, He W, Li J, Liu J, Yan X, Chen J, Song L, Du A, Yao X (2020) Edge-rich Fe-N4 active sites in defective carbon for oxygen reduction catalysis. Adv Mater 32(16):e2000966

    Article  PubMed  Google Scholar 

  40. Nematollahi P, Barbiellini B, Bansil A, Lamoen D, Qingying J, Mukerjee S, Neyts EC (2022) Identification of a robust and durable FeN4Cx catalyst for ORR in PEM fuel cells and the role of the fifth ligand. ACS Catal 12(13):7541–7549

    Article  CAS  Google Scholar 

  41. Xin C, Shang W, Hu J, Zhu C, Guo J, Zhang J, Dong H, Liu W, Shi Y (2021) Integration of morphology and electronic structure modulation on atomic iron-nitrogen-carbon catalysts for highly efficient oxygen reduction. Adv Funct Mater 32(2):2108345

    Article  Google Scholar 

  42. Ma Q, Jin H, Zhu J, Li Z, Xu H, Liu B, Zhang Z, Ma J, Mu S (2021) Stabilizing Fe-N-C catalysts as model for oxygen reduction reaction. Adv Sci (Weinh) 8(23):e2102209

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Wang.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Meng, X., Liu, T. et al. Preparation of highly dispersed FeNx active sites for oxygen reduction reaction electrocatalyst by electrospinning and complexation. Ionics 29, 1089–1099 (2023). https://doi.org/10.1007/s11581-022-04861-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-022-04861-4

Keywords

Navigation