Skip to main content

Advertisement

Log in

Enhanced interfacial and structural stability of Ni-rich LiNi0.96Mg0.02Ti0.02O2 cathode using a CeO2-coating technique

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

With the rapid development of electric vehicles in recent years, high-energy layered lithium Ni-rich oxides have attracted much attention. However, the ever-increasing cobalt price and stability issues of Ni-rich cathodes pose substantial obstacles to the practical application of lithium-ion batteries (LIBs). Here, we employed a one-step method to synthesize a CeO2-coating LiNi0.96Mg0.02Ti0.02O2 (NMT@Ce) cathode with reliable interface and structure. The CeO2 coating layer can prevent cathodes from electrolyte assault and form oxygen vacancies to improve the material thermal stability. The as-obtained LiNi0.96Mg0.02Ti0.02O2-0.5 wt% Ce (NMT@Ce-0.5%) delivers a high specific capacity (177.8 mAh·g−1 at 1 C) and good durability (96.7% after 100 cycles at 1 C). This modification method significantly enhances the stability of the interface and structure for Ni-rich Co-free cathode material, accelerating the commercialization of high-energy–density LIBs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Armand M, Tarascon JM (2008) Building better batteries. Nature 451:652–657

    Article  PubMed  CAS  Google Scholar 

  2. Guo YG, Hu JS, Wan LJ (2008) Nanostructured materials for electrochemical energy conversion and storage devices. Adv Mater 20:2878–2887

    Article  Google Scholar 

  3. Dunn B, Kamath H, Tarascon JM (2011) Electrical energy storage for the grid: a battery of choices. Science 334:928–935

    Article  PubMed  CAS  Google Scholar 

  4. Shi JL, Xiao DD, Ge M (2018) High-capacity cathode material with high voltage for Li-ion batteries. Adv Mater 30:1705575

    Article  CAS  Google Scholar 

  5. Manthiram A (2020) A reflection on lithium-ion battery cathode chemistry. Nat Commun 11:1550

    Article  PubMed  PubMed Central  Google Scholar 

  6. Zhao H, Sheng L (2022) Cobalt-free cathode materials: families and their prospects. Adv Energy Mater 16:2103894

    Article  CAS  Google Scholar 

  7. Zou YG, Meng FQ (2021) Stable interfacial phase on single-crystalline Ni-rich cathode via chemical reaction with phosphomolybdic acid. Nano Energy 87:106172

    Article  CAS  Google Scholar 

  8. Zhang N, Li J, Li H (2018) Structural, electrochemical, and thermal properties of nickel-rich LiNixMnyCozO2 materials. Chem Mater 30:8852–8860

    Article  CAS  Google Scholar 

  9. Li H, Liu A, Zhang N, Wang Y (2019) An unavoidable challenge for Ni-rich positive electrode materials for lithium-ion batteries. Chem Mater 31:7574–7583

    Article  CAS  Google Scholar 

  10. Yu L, Liu T, Amine R, Wen J (2022) High nickel and no cobalt horizontal line the pursuit of next-generation layered oxide cathodes. ACS Appl Mater 20:23056

    Article  CAS  Google Scholar 

  11. Muralidharan N (2022) Next-generation cobalt-free cathodes - a prospective solution to the battery industry’s cobalt problem. Adv Energy Mater 12:2103050

    Article  CAS  Google Scholar 

  12. Guo SJ, Wu TT, Sun YG (2022) Interface engineering of a ceramic electrolyte by Ta2O5 nanofilms for ultrastable lithium metal batteries. Adv Funct Mater 32:2201498

  13. Cheng Y, Sun Y, Chu C, Chang L (2022) Stabilizing effects of atomic Ti doping on high-voltage high-nickel layered oxide cathode for lithium-ion rechargeable batteries. Nano Res 15:4091–4099

    Article  CAS  Google Scholar 

  14. Weigel T, Schipper F, Erickson E (2022) Structural and electrochemical aspects of LiNi0.8Co0.1Mn0.1O2 cathode materials doped by various cations. ACS Energy Lett 4:508–516

    Article  CAS  Google Scholar 

  15. Zhang LM, Xiao JC, Wang JR (2022) Active-site-specific structural engineering enabled ultrahigh rate performance of the NaLi3Fe3(PO4)2(P2O7) cathode for lithium-ion batteries. ACS Appl Mater 14:11255–21126

    Article  CAS  Google Scholar 

  16. Geng CX, Rathore D, Heino D (2022) Mechanism of action of the tungsten dopant in LiNiO2 positive electrode materials. Adv Energy Mater 12:2103067

    Article  CAS  Google Scholar 

  17. Park KY (2022) Elucidating and mitigating high-voltage degradation cascades in cobalt-free LiNiO2 lithium-ion battery cathodes. Adv Mater 34:2106402

    Article  CAS  Google Scholar 

  18. Jeong M, Kim H, Lee W (2020) Stabilizing effects of Al-doping on Ni-rich LiNi0.80Co0.15Mn0.05O2 cathode for Li rechargeable batteries. J Power Sources 474:228592

    Article  CAS  Google Scholar 

  19. Zhu CQ, Cao MY, Zhang HY (2021) Synergistic effect of microstructure engineering and local crystal structure tuning to improve the cycling stability of Ni-rich cathodes. ACS Appl Mater Interfaces 13:48720–48729

    Article  PubMed  CAS  Google Scholar 

  20. Mu LQ, Zhang R (2019) Dopant distribution in co-free high-energy layered cathode materials. Chem Mater 31:9769–9776

    Article  CAS  Google Scholar 

  21. Li J, Zhang ML, Zhang DY, Yan YX (2020) An effective doping strategy to improve the cyclic stability and rate capability of Ni-rich LiNi0.80Co0.15Mn0.05O2 cathode. Chem Eng J 402:126195

    Article  CAS  Google Scholar 

  22. Ma Y, Fei L (2020) Open-channel 011 facet CeO2 with a shorter pathway of Li+ migration as a modification material for LiNi0.8Co0.1Mn0.1O2 toward high-rate lithium-ion batteries. ACS Sustain Chem Eng 8:8795–8802

    Article  CAS  Google Scholar 

  23. Sun XG, Jafta CJ, Tan S, Borisevich A (2022) Facile surface coatings for performance improvement of NMC811 battery cathode material. J Electrochem Soc 169:020565

    Article  Google Scholar 

  24. He X, Xu X, Wang LG (2019) Enhanced electrochemical performance of LiNi0.8Co0.15Al0.05O2 cathode material via Li2TiO3 nanoparticles coating. J Electrochem Soc 166:A143–A150

    Article  CAS  Google Scholar 

  25. Qu XY, Huang H, Wang T (2022) An integrated surface coating strategy to enhance the electrochemical performance of nickel-rich layered cathodes. Nano Energy 91:106665

    Article  CAS  Google Scholar 

  26. Lee JS, Park YJ (2021) Comparison of LiTaO3 and LiNbO3 surface layers prepared by post-and precursor-based coating methods for Ni-rich cathodes of all-solid-state batteries. ACS Appl Mater Interfaces 13:38333–38345

    Article  PubMed  CAS  Google Scholar 

  27. Liu W, Li XF, Xiong DB (2018) Significantly improving cycling performance of cathodes in lithium ion batteries: the effect of Al2O3 and LiAlO2 coatings on LiNi0.6Co0.2Mn0.2O2. Nano Energy 44:111–120

    Article  CAS  Google Scholar 

  28. Schipper F, Bouzaglo H, Dixit M (2018) From surface ZrO2 coating to bulk Zr doping by high temperature annealing of nickel-rich lithiated oxides and their enhanced electrochemical performance in lithium ion batteries. Adv Energy Mater 8:1701682

    Article  CAS  Google Scholar 

  29. Ning F, Xu B, Shi J (2016) Structural, electronic, and Li migration properties of RE-doped (RE = Ce, La) LiCoO2 for Li-ion batteries: a first-principles investigation. J Phys Chem C 120:18428–18434

    Article  CAS  Google Scholar 

  30. Liu Y, Tang LB, Wei HX (2019) Enhancement on structural stability of Ni-rich cathode materials by in-situ fabricating dual-modified layer for lithium-ion batteries. Nano Energy 65:104043

    Article  CAS  Google Scholar 

  31. Chen ZG, Deng W, Huang Z (2020) Pseudo-bonding and electric-field harmony for Li-rich Mn-based oxide cathode. Adv Funct 30:2004302

    Article  CAS  Google Scholar 

  32. Deng YP, Fu F, Wu ZG, Yin ZW, Zhang T (2016) Layered/spinel heterostructured Li-rich materials synthesized by a one-step solvothermal strategy with enhanced electrochemical performance for Li-ion batteries. J Mater 4:257–263

    CAS  Google Scholar 

  33. Xu Y, Li X, Wang Z, Guo H, Peng W (2016) The enhanced high cut-off voltage electrochemical performances of LiNi0.5Co0.2Mn0.3O2 by the CeO2 modification. Electrochim Acta 219:49–60

    Article  CAS  Google Scholar 

  34. Ha HW, Yun NJ, Kim MH, Woo MH, Kim K (2006) Enhanced electrochemical and thermal stability of surface-modified LiCoO2 cathode by CeO2 coating. Electrochim Acta 51:3297–3302

    Article  CAS  Google Scholar 

  35. Fallah JE, Hilaire L, Normand FL (1991) Reduction of CeO2 by hydrogen - magnetic-susceptibility and Fourier-transform infrared, ultraviolet and X-ray photoelectron-spectroscopy measurements. J Chem Soc Faraday Trans 87:1601–1609

    Article  Google Scholar 

  36. Zhang Z, Chen D, Chang C (2017) Improved electrochemical performance of LiNi0.8Co0.1Mn0.1O2 cathode materials via incorporation of rubidium cations into the original Li sites. RSC Adv 7:51721–51728

    Article  CAS  Google Scholar 

  37. Liu XH, Kou LQ, Shi T, Liu K, Chen L (2014) Excellent high rate capability and high voltage cycling stability of Y2O3-coated LiNi0.5Co0.2Mn0.3O2. J Power Sources 267:874

    Article  CAS  Google Scholar 

  38. Qiu B, Zhang M, Wu L, Wang J, Xia Y (2016) Gas-solid interfacial modification of oxygen activity in layered oxide cathodes for lithium-ion batteries. Nat Commun 7:12108

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Qiu ZP, Zhang YG, Song X (2018) Beneficial effect of incorporating Ni-rich oxide and layered over-lithiated oxide into high-energy-density cathode materials for lithium-ion batteries. J Power Sources 400:341–349

    Article  CAS  Google Scholar 

  40. Li X, Zhang KJ, Wang MS, Liu Y (2018) Dual functions of zirconium modification on improving the electrochemical performance of Ni-rich LiNi0.8Co0.1Mn0.1O2. Sustain Energ Fuels 2:413–421

    Article  CAS  Google Scholar 

  41. Sun YK, Myung ST, Park BC (2009) High-energy cathode material for long-life and safe lithium batteries. Nat Mater 8:320

    Article  PubMed  CAS  Google Scholar 

  42. Xu X, Huo H, Jian J, Wang L, Zhu H (2019) Radially oriented single-crystal primary nanosheets enable ultrahigh rate and cycling properties of LiNi0.8Co0.1Mn0.1O2 cathode material for lithium-ion batteries. Adv Energy Mater 9:1803963

    Article  CAS  Google Scholar 

  43. Kim UH, Ryu HH, Kim JH, Muecke R, Kaghazchi P (2019) Microstructure-controlled Ni-rich cathode material by microscale compositional partition for next-generation electric vehicles. Adv Energy Mater 9:1803902

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the project of the National Natural Science Foundation of China (Grand No. 22005254).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Li.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, Y., Wang, Z., Wan, Q. et al. Enhanced interfacial and structural stability of Ni-rich LiNi0.96Mg0.02Ti0.02O2 cathode using a CeO2-coating technique. Ionics 28, 5039–5048 (2022). https://doi.org/10.1007/s11581-022-04748-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-022-04748-4

Keywords

Navigation