Skip to main content
Log in

(AgI)(1−x)–(Al2O3)x nanocomposite system: ionic conductivity simulations by a random variable theory

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Conductivity data of (AgI)(1−x)–(Al2O3)x nanocomposites are fitted by using a random variable theory with a probability density in the charge carriers. Experimental data show that the increase in alumina concentration leads to a decrease in the jump in conductivity experienced by the system at 420 K. The experimental data, both the abrupt jump and the logarithm of conductivity times temperature as a function of the inverse of temperature behavior in the 300–500 K temperature range and concentrations x = 0.0,0.3,0.6, and 0.8 per mol, were well fitted. The abrupt change in conductivity results from the sudden increase in the number of carriers with a probability distribution function that varies with the reduced temperature of the system. The chosen values for the parameters Γ and χ that fit the conductivity behavior for each concentration are on the theoretical curve predicted by the model with a probability density in the charge carriers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Habasaki J, Leon C, Ngai KL (2017) Dynamics of glassy, crystalline and liquid ionic conductors. Springer, New York

    Book  Google Scholar 

  2. Kamal KK (2017) Composite materials. Springer-Verlag, New York

    Google Scholar 

  3. Brownlee BJ, Tsui L-K, Vempati K, Plumley JB, Iverson BD, Peng TL, Garzon FH (2020) J Appl Phys 128:035103. (pp 8)

  4. Nagai M, Nishino T (1992) Sol Stat Ionics 53-56:63–67

  5. Lee JS, Adams S, Maier J (2000) J Electrochem Soc 177:2407–2418

  6. Takahashi T (1989) (ed) High conductivity solid ionic conductors: recent trends and applications. World Scientific Publishing Co, Singapore

  7. Liu LF, Lee SW, Li JB, Alexe M, Rao GH, Zhou WY, Lee JJ, Lee W, Gösele U. (2008) Nanotechnology 19:495706 (7 pp)

  8. Mirabal N, Aguirre P, Santa Ana MA, Benavente E, Gonzáles G (2003) Electrochem Acta 48:2123–2127

  9. Uvarov NF, Isupov VP, Sharma V, Shukla AK (1992) Sol Stat Ionics 51:41–52

  10. Shastry MCR, Rao KJ (1992) Sol Stat Ionics 51:311–316

  11. Agrawal RC, Gupta RK (1999) J Mat Sci 34:1131–1162

  12. Aniya M (2019) Pure Appl Chem 91:1797–1806

  13. Rains CA, Ray JR, Vashishta P (1993) Computer simulation studies in condensed-matter physics IV. Springer, New York

    Google Scholar 

  14. Shahi K, Wagner JB (1982) J Sol Stat Chem 42:107–119

  15. Knauth PL (2000) Electroceram 5(2):111–125

  16. Jow T, Wagner Jr JB (1979) J Electrochem Soc 126(3):1963–1972

  17. Maier J (1995) Prog. Solid State Chem 23:171–263

  18. Uvarov NF, Ponomareva VG, Lavrova GV (2010) Russ J Electrch 46:772–784

  19. Uvarov NF, Hairetdinov EF, Bokhonov BB, Bratel NB (1996) Sol Stat Ionics 86-88:573–576

  20. Rice MJ, Strässler S, Toombs GA (1974) Phys Rev Lett 32:596–599

  21. Huberman BA (1974) Phys Rev Lett 32:1000–1003

  22. Welch N, Dienes GJ (1977) J Phys Chem Solids 38:311–317

  23. Hainovsky DO, Dienes GJ (1995) Phys Rev B 51:15789–15797

  24. Aniya M, Ichihara S (2005) J Phys Chem Sol 66:288–291

  25. Shewmon P (2016) Diffusion in solids, 2nd edn. Springer, New York. Chap 5

    Book  Google Scholar 

  26. Peña Lara D, Vargas RA, Correa H (2004) Sol Stat Ionics 175:451–454

  27. Montaño CJ, Burbano JC, Peña Lara D, Diosa JE, Vargas RA (2011) Phase Trans 84:916–923

  28. Burbano JC, Vargas RA, Peña Lara D, Lozano CA, Correa H (2009) Sol Stat Ionics 180:1553–1557

  29. Burbano JC (2014) Bacheler’s Thesis, Universidad del Valle, Cali, Colombia

  30. Yamamoto T, Kobayashi H, Kumara LSR, Sakata O, Nitta K, Uruga T, Kitagawa H (2017) Nano Lett 17:5273–5276

  31. Wang Y, Huang L, He H, Li M (2003) Phys B 325:357–36

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Peña Lara.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lara, D.P., Correa, H. & Suescún-Díaz, D. (AgI)(1−x)–(Al2O3)x nanocomposite system: ionic conductivity simulations by a random variable theory. Ionics 28, 2911–2917 (2022). https://doi.org/10.1007/s11581-022-04496-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-022-04496-5

Keywords

Navigation