Skip to main content

Advertisement

Log in

MOF-5-derived honeycomb structured mesoporous carbon with AlF3·3H2O for high-stability lithium-sulfur battery cathode

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Lithium-sulfur (Li–S) battery has now gradually emerged as the representative secondary energy storage battery of low cost, high security, and high theoretical specific capacity (1675 mAh g−1). However, the insulation properties of sulfur and shuttle issue of polysulfides between electrolytes lead to poor coulombic efficiency and performance of sulfur cathode. Therefore, we use metal–organic frameworks (MOFs) as pore-forming agent and glucose as primary carbon source to synthesize a honeycomb structured porous carbon (PC) material with high specific surface area (2151.9 m2 g−1) and large mesopore volume (2.16 cm3 g−1), which acts as the conductive skeleton for sulfur cathode. Furthermore, after mixing a trace of aluminum fluoride (AlF3) into sulfur electrode, the corresponding cycle performance and electrochemical stability have been further improved. The AlF3·3H2O/PC/S composition with 80 wt% sulfur loading exhibits the highest discharge capacity of 1298.1 mAh g−1 at the current density of 1 C and maintains at 455.6 mAh g−1 with ~ 99% coulombic efficiency after 500 cycles. This work supplies a facile and effective strategy for manufacture of more progressive porous carbonaceous sulfur host material and improving practical performance of Li–S batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Manthiram A, Fu Y, Su Y-S (2013) Challenges and prospects of lithium–sulfur batteries. Acc Chem Res 46(5):1125–1134

    Article  CAS  PubMed  Google Scholar 

  2. Fang R, Zhao S, Sun Z, Wang D-W, Cheng H-M, Li F (2017) More reliable lithium-sulfur batteries: status, solutions and prospects. Adv Mater 29(48):1606823

    Article  CAS  Google Scholar 

  3. Ji X, Nazar LF (2010) Advances in Li–S batteries. J Mater Chem 20(44):9821–9826

    Article  CAS  Google Scholar 

  4. Mikhaylik Y, Akridge J (2004) Polysulfide shuttle study in the Li/S battery system. J Electrochem Soc 151:A1969–A1976

    Article  CAS  Google Scholar 

  5. Schuster J, He G, Mandlmeier B, Yim T, Lee KT, Bein T, Nazar LF (2012) Spherical ordered mesoporous carbon nanoparticles with high porosity for lithium–sulfur batteries. Angew Chem Int Ed 51(15):3591–3595

    Article  CAS  Google Scholar 

  6. Seh ZW, Sun Y, Zhang Q, Cui Y (2016) Designing high-energy lithium–sulfur batteries. Chem Soc Rev 45(20):5605–5634

    Article  CAS  PubMed  Google Scholar 

  7. Zheng J, Gu M, Wang C, Zuo P, Koech P, Zhang J-G, Liu J, Xiao J (2013) Controlled nucleation and growth process of Li2S2/Li2S in lithium-sulfur batteries. J Electrochem Soc 160:A1992–A1996

    Article  CAS  Google Scholar 

  8. Chulliyote R, Hareendrakrishnakumar H, Raja M, Gladis JM, Stephan AM (2017) Sulfur-immobilized nitrogen and oxygen Co-doped hierarchically porous biomass carbon for lithium-sulfur batteries: influence of sulfur content and distribution on its performance. ChemistrySelect 2(32):10484–10495

    Article  CAS  Google Scholar 

  9. Li Z, Zhang J, Chen Y, Li J, Lou X (2015) Pie-like electrode design for high-energy density lithium-sulfur batteries. Nat Commun 6:8850

    Article  CAS  PubMed  Google Scholar 

  10. Liu C, Yin Z-J, Deng H, Liu C, Zhao J, Lan Q, Tang S, Liang J, Cheng Q, Liu J, Cao Y-C, Liu Z (2017) Nitrogen-doped porous carbon as high-performance cathode material for lithium-sulfur battery. ChemistrySelect 2(34):11030–11034

    Article  CAS  Google Scholar 

  11. Yang R, Liu S, Liu Y, Liu L, Chen L, Yu W, Yan Y, Feng Z, Xu Y (2021) Decalcified fish scale-based sponge-like nitrogen-doped porous carbon for lithium-sulfur batteries. Ionics 27(1):165–174

    Article  CAS  Google Scholar 

  12. Yuan G, Yin F, Zhao Y, Bakenov Z, Wang G, Zhang Y (2016) Corn stalk-derived activated carbon with a stacking sheet-like structure as sulfur cathode supporter for lithium/sulfur batteries. Ionics 22(1):63–69

    Article  CAS  Google Scholar 

  13. He J, Luo L, Chen Y, Manthiram A (2017) Yolk–shelled C@Fe3O4 nanoboxes as efficient sulfur hosts for high-performance lithium–sulfur batteries. Adv Mater 29(34):1702707

    Article  CAS  Google Scholar 

  14. Li M, Feng W, Su W, Song C, Cheng L (2019) MOF-derived hollow cage Ni–Co mixed oxide/CNTs nanocomposites with enhanced electrochemical performance for lithium–sulfur batteries. Ionics 25(9):4037–4045

    Article  CAS  Google Scholar 

  15. Suriyakumar S, Rani GJ, Stephan AM (2020) Fe3O4-seated rGO–sulfur complex as a potential cathode material for lithium–sulfur batteries. Ionics 26(5):2201–2210

    Article  CAS  Google Scholar 

  16. Han J (2020) Hollow TiO2 spheres wrapped in graphene nanosheets as advanced polysulfide barrier for superior electrochemical performance lithium-sulfur batteries. Ionics 26(12):6119–6124

    Article  CAS  Google Scholar 

  17. Hu C, Chen H, Shen Y, Lu D, Zhao Y, Lu A-H, wu X, Lu W, Chen L, (2017) In situ wrapping of the cathode material in lithium-sulfur batteries. Nat Commun 8(1):479

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Wang D, Hong X, Liu S, Ge X, Tang B, Wang H, Xie K, Ren W (2020) Reversible insertion/extraction of polysulfides into/from polyaniline as an effective strategy to confine polysulfides in lithium-sulfur batteries. Ionics 26(1):191–199

    Article  CAS  Google Scholar 

  19. Lu Q, Zhu Q, Guo W, Li X (2019) Polypyrrole-modified carbon nanotubes@manganese dioxide@sulfur composite for lithium–sulfur batteries. Ionics 25(7):3107–3119

    Article  CAS  Google Scholar 

  20. Li C, Xi Z, Guo D, Chen X, Yin L (2018) Chemical immobilization effect on lithium polysulfides for lithium–sulfur batteries. Small 14(4):1701986

    Article  CAS  Google Scholar 

  21. Liu JD, Zheng XS, Shi ZF, Zhang SQ (2014) Sulfur/mesoporous carbon composites combined with γ-MnS as cathode materials for lithium/sulfur batteries. Ionics 20(5):659–664

    Article  CAS  Google Scholar 

  22. Ma L, Yuan H, Zhang W, Zhu G, Wang Y, Hu Y, Zhao P, Chen R, Chen T, Liu J, Hu Z, Jin Z (2017) Porous-shell vanadium nitride nanobubbles with ultrahigh areal sulfur loading for high-capacity and long-life lithium–sulfur batteries. Nano Lett 17(12):7839–7846

    Article  CAS  PubMed  Google Scholar 

  23. Lou S, Zhang H, Guo J, Ma Y, Li C, Huo H, Zuo P, Yin G (2019) A porous N-doped carbon aggregate as sulfur host for lithium-sulfur batteries. Ionics 25(5):2131–2138

    Article  CAS  Google Scholar 

  24. Fu A, Wang C, Pei F, Cui J, Fang X, Zheng N (2019) Recent advances in hollow porous carbon materials for lithium-sulfur batteries. Small 15(10):1804786

  25. Dong W, Meng L, Hong X, Liu S, Shen D, Xia Y, Yang S (2020) MnO2/rGO/CNTs framework as a sulfur host for high-performance Li-S batteries. Molecules 25(8):1989

  26. Zhao Y, Wang L, Huang L, Maximov MY, Jin M, Zhang Y, Wang X, Zhou G (2017) Biomass-derived oxygen and nitrogen Co-doped porous carbon with hierarchical architecture as sulfur hosts for high-performance lithium/sulfur batteries. Nanomaterials (Basel) 7(11):402

    Article  PubMed Central  CAS  Google Scholar 

  27. Feng M, Lu W, Zhou Y, Zhen R, He H, Wang Y, Li C (2020) Synthesis of polypyrrole/nitrogen-doped porous carbon matrix composite as the electrode material for supercapacitors. Sci Rep 10(1):15370

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Bai X, Wang Z, Luo J, Wu W, Liang Y, Tong X, Zhao Z (2020) Hierarchical porous carbon with interconnected ordered pores from biowaste for high-performance supercapacitor electrodes. Nanoscale Res Lett 15(1):88

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Dutta S, Bhaumik A, Wu KCW (2014) Hierarchically porous carbon derived from polymers and biomass: effect of interconnected pores on energy applications. Energy Environ Sci 7(11):3574–3592

    Article  CAS  Google Scholar 

  30. Wang Z, Xue D, Song H, Zhong X, Wang J, Hou P (2019) Hierarchical micro-mesoporous carbon prepared from waste cotton textile for lithium-sulfur batteries. Ionics 25(9):4057–4066

    Article  CAS  Google Scholar 

  31. Ghouri ZK, Al-Meer S, Barakat NAM, Kim HY (2017) ZnO@C (core@shell) microspheres derived from spent coffee grounds as applicable non-precious electrode material for DMFCs. Sci Rep 7(1):1738

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Li W, Qian J, Zhao T, Ye Y, Xing Y, Huang Y, Wei L, Zhang N, Chen N, Li L, Wu F, Chen R (2019) Boosting high-rate Li-S batteries by an MOF-derived catalytic electrode with a layer-by-layer structure. Adv Sci (Weinh) 6(16):1802362

    Article  CAS  Google Scholar 

  33. Hu M, Reboul J, Furukawa S, Torad NL, Ji Q, Srinivasu P, Ariga K, Kitagawa S, Yamauchi Y (2012) Direct carbonization of Al-based porous coordination polymer for synthesis of nanoporous carbon. J Am Chem Soc 134(6):2864–2867

    Article  CAS  PubMed  Google Scholar 

  34. Luo Z, Wang X, Lei W, Xia P, Pan Y (2020) Confining sulfur in sandwich structure of bamboo charcoal and aluminum fluoride (BC@S@AlF3) as a long cycle performance cathode for Li-S batteries. J Mater Sci & Technol 55:159–166

    Article  Google Scholar 

  35. Luo Z, Lei W, Wang X, Pan J, Pan Y, Xia S (2020) AlF3 coating as sulfur immobilizers in cathode material for high performance lithium-sulfur batteries. J Alloy Compd 812:152132

  36. Estruga M, Meng F, Li L, Chen L, Li X, Jin S (2012) Large-scale solution synthesis of α-AlF3·3H2O nanorods under low supersaturation conditions and their conversion to porous β-AlF3 nanorods. J Mater Chem 22(39):20991–20997

    Article  CAS  Google Scholar 

  37. Kim HB, Park BC, Myung ST, Amine K, Prakash J, Sun Y-K (2008) Electrochemical and thermal characterization of AlF3-coated Li[Ni0.8Co0.15Al0.05]O2 cathode in lithium-ion cells. J Power Sources 179:347–350

    Article  CAS  Google Scholar 

  38. Rosina K, Jiang M, Zeng D, Salager E, Best A, Grey C (2012) Structure of aluminum fluoride coated Li[Li1/9Ni1/3Mn5/9]O2 cathodes for secondary lithium-ion batteries. J Mater Chem 22:20602–20610

    Article  CAS  Google Scholar 

  39. Sun Y-K, Lee M-J, Yoon C, Hassoun J, Amine K, Scrosati B (2012) Batteries: the role of AlF3 coatings in improving electrochemical cycling of li-enriched nickel-manganese oxide electrodes for Li-ion batteries. Adv Mater 24:1192–1196

    Article  CAS  PubMed  Google Scholar 

  40. Zheng J, Zhang Z, Wu X, Dong Z, Zhu Z (2008) The effects of AlF3 coating on the performance of Li[Li0.2Mn0.54Ni0.13Co0.13]O2 positive electrode material for lithium-ion battery. J Electrochem Soc 155:A775–A782

    Article  CAS  Google Scholar 

  41. Zhang P, Li X, Hua Y, Yu J, Ding Y (2018) Enhanced performance and anchoring polysulfide mechanism of carbon aerogel/sulfur material with Cr doping and pore tuning for Li-S batteries. Electrochim Acta 282:499–509

    Article  CAS  Google Scholar 

  42. Zhang Y, Sun L, Li H, Tan T, Li J (2018) Porous three-dimensional reduced graphene oxide for high-performance lithium-sulfur batteries. J Alloy Compd 739:290–297

  43. Kong L-L, Liu S, Li G, Gao X-P (2017) A high-efficiency sulfur/carbon composite based on 3D graphene nanosheet@carbon nanotube matrix as cathode for lithium-sulfur battery. Adv Energy Mater 7:1602543

    Article  CAS  Google Scholar 

  44. Jeong M-G, Du H-L, Islam M, Lee J, Sun Y-K, Jung H-G (2017) Self-rearrangement of silicon nanoparticles embedded in micro-carbon sphere framework for high-energy and long-life lithium-ion batteries. Nano Lett 17:5600–5606

    Article  CAS  PubMed  Google Scholar 

  45. Cui Z, Zu C, Zhou W, Manthiram A, Goodenough J (2016) Mesoporous titanium nitride-enabled highly stable lithium-sulfur batteries. Adv Mater 28:6926–6931

    Article  CAS  PubMed  Google Scholar 

  46. Li W, Yao H, Yan K, Zheng G, Liang Z, Chiang Y-M, Cui Y (2015) The synergetic effect of lithium polysulfide and lithium nitrate to prevent lithium dendrite growth. Nat Commun 6:7436

    Article  PubMed  CAS  Google Scholar 

  47. Song J, Yu Z, Gordin ML, Wang D (2016) Advanced sulfur cathode enabled by highly crumpled nitrogen-doped graphene sheets for high-energy-density lithium–sulfur batteries. Nano Lett 16(2):864–870

    Article  CAS  PubMed  Google Scholar 

  48. Ye Y, Song M-K, Xu Y, Nie K, Liu Y-s, Feng J, Sun X, Cairns EJ, Zhang Y, Guo J (2019) Lithium nitrate: a double-edged sword in the rechargeable lithium-sulfur cell. Energy Storage Mater 16:498–504

    Article  Google Scholar 

  49. Wen C, Zheng X, Li X, Yuan M, Li H, Sun G (2021) Rational design of 3D hierarchical MXene@AlF3/Ni(OH)2 nanohybrid for high-performance lithium-sulfur batteries. Chem Eng J 409:128102

  50. Tang X, Sun Z, Yang H, Fang H, Wei F, Cheng H-M, Zhuo S, Li F (2018) Electrochemical process of sulfur in carbon materials from electrode thickness to interlayer. J Energy Chem 31(31):119–124

    Google Scholar 

  51. Zhou Y, Zhou C, Li Q, Yan C, Han B, Xia K, Gao Q, Wu J (2015) Enabling prominent high-rate and cycle performances in one lithium-sulfur battery: designing permselective gateways for Li+ transportation in holey-CNT/S cathodes. Adv Mater 27(25):3774–3781

    Article  CAS  PubMed  Google Scholar 

  52. Zhang B, Wu J, Gu J, Li S, Yan T, Gao X-P (2021) The fundamental understanding of lithium polysulfides in ether-based electrolyte for lithium–sulfur batteries. ACS Energy Lett 6(2):537–546

    Article  CAS  Google Scholar 

  53. Deng N, Ju J, Yan J, Zhou X, Qin Q, Zhang K, Liang Y, Li Q, Kang W, Cheng B (2018) CeF3-doped porous carbon nanofibers as sulfur immobilizers in cathode material for high-performance lithium-sulfur batteries. ACS Appl Mater Interfaces 10(15):12626–12638

    Article  CAS  PubMed  Google Scholar 

  54. Chen M, Lu Q, Jiang S, Huang C, Wang X, Wu B, Xiang K, Wu Y (2018) MnO2 nanosheets grown on the internal/external surface of N-doped hollow porous carbon nanospheres as the sulfur host of advanced lithium-sulfur batteries. Chem Eng J 335:831–842

    Article  CAS  Google Scholar 

  55. Deng Z, Zhang Z, Lai Y, Liu J, Li J, Liu Y (2013) Electrochemical impedance spectroscopy study of a lithium/sulfur battery: modeling and analysis of capacity fading. J Electrochem Soc 160(4):A553–A558

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by the National Natural Science Foundation of China (Grant Nos. 51772254, 11472236, and 11902283), the Natural Science Foundation of Hunan Province, China (Grant No. 2019JJ50578), the National Training Program of Innovation, Entrepreneurship for Undergraduates (201510530004), and the Innovation Team of Hunan Province (2018RS3091).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Junan Pan or Shuhong Xie.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2609 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, Q., Zhang, Y., Yuan, G. et al. MOF-5-derived honeycomb structured mesoporous carbon with AlF3·3H2O for high-stability lithium-sulfur battery cathode. Ionics 27, 4761–4770 (2021). https://doi.org/10.1007/s11581-021-04231-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-021-04231-6

Keywords

Navigation