Skip to main content
Log in

Comparative studies of tungsten and zirconium doping on single crystal cobalt-free cathode material

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

In this study, the cobalt-free single crystal cathode materials LiNi0.75Mn0.25O2 (NM), W-doped LiNi0.75Mn0.25O2 (NMW) and Zr-doped LiNi0.75Mn0.25O2 (NMZ) were prepared by a high-temperature solid-state method. The effects of W and Zr elements to the cathode material LiNi0.75Mn0.25O2 were studied systematically. The results show that W doping can improve the reversible specific capacity slightly. Nevertheless, it is not conducive to the cyclic stability. Meanwhile, although the reversible specific capacity of the material decreases slightly with the Zr doping, its cyclic stability and high rate capability can be improved significantly. Cyclic voltammetry (CV) results reveal that the improvement originates from the mitigated electrode polarization phenomenon and enhanced Li+ kinetics. In addition, direct current resistance (DCR) analyses verify that Zr doping can effectively inhibit the increase of DCR, which is beneficial to the rate capability and cycle stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Mizushima K, Jones PC, Wiseman PJ, Goodenough JB (1980) LixCoO2 (0≤x≤1): a new cathode material for batteries of high energy density. Mater Res Bull 15:783–789

    Article  CAS  Google Scholar 

  2. Kalaiselvi N, Kalyani P (2005) Various aspects of LiNiO2 chemistry: a review. Sci Technol Adv Mater 6:689–703

    Article  Google Scholar 

  3. Guo SH, Yuan B, Zhao HM, Hua D, Shen Y, Sun CC, Chen TM, Sun W, Wu JS, Zheng B, Zhang WN, Li S, Huo FW (2019) Dual-component LixTiO2@silica functional coating in one layer for performance enhanced LiNi0.6Co0.2Mn0.2O2 cathode. Nano Energy 58:673–679

    Article  CAS  Google Scholar 

  4. Liu X, Xu GL, Yin L, Huang IH, Li Y, Lu LG, Xu WQ, Zhang XQ, Chen YB, Ren Y, Sun CJ, Chen ZH, Ouyang MG, Amine K (2020) Probing the thermal-driven structural and chemical degradation of Ni-rich layered cathodes by Co/Mn exchange. J Am Chem Soc 142:19745–19753

    Article  CAS  Google Scholar 

  5. Liu TC, Yu L, Liu JJ, Lu J, Bi XX, Dai A, Li M, Li MF, Hu ZX, Ma L, Luo D, Zheng JX, Wu TP, Ren Y, Wen JG, Pan F, Amine K (2021) Understanding Co roles towards developing Co-free Ni-rich cathodes for rechargeable batteries. Nat Energy 6:277–286

    Article  CAS  Google Scholar 

  6. Wang XX, Ding YL, Deng YP, Chen ZW (2020) Ni-rich/Co-poor layered cathode for automotive Li-ion batteries: promises and challenges. Adv Energy Mater 10:1903864

    Article  CAS  Google Scholar 

  7. Schipper F, Erickson EM, Erk C, Shin JY, Chesneau FF, Aurbach D (2017) Review-recent advances and remaining challenges for lithium ion battery cathodes. J Electrochem Soc 164:A6220–A6228

    Article  CAS  Google Scholar 

  8. Liu YL, Wu HH, Li K, Li HY, Ouyang DX, Arab PP, Phattharasupakun N, Rathore D, Johnson M, Wang YQ, Yin S, Dahn JR (2020) Cobalt-free core-shell structure with high specific capacity and long cycle life as an alternative to Li[Ni0.8Mn0.1Co0.1]O2. J Electrochem Soc 167:120533

    Article  CAS  Google Scholar 

  9. Li HY, Cormier M, Zhang N, Inglis J, Li J, Dahn JR (2019) Is cobalt needed in Ni-rich positive electrode materials for lithium ion batteries? J Electrochem Soc 166:A429–A439

    Article  CAS  Google Scholar 

  10. Aishova A, Park G‐T, Yoon CS, Sun Y‐K (2019) Cobalt‐free high‐capacity Ni‐rich layered Li[Ni0.9Mn0.1]O2 cathode. Adv Energy Mater 10(4):1903179. https://doi.org/10.1002/aenm.201903179

    Article  CAS  Google Scholar 

  11. Kim YJ, Seong WM, Manthiram A (2021) Cobalt-free, high-nickel layered oxide cathodes for lithium-ion batteries: progress, challenges, and perspectives. Energy Storage Mater 34:250–259

    Article  Google Scholar 

  12. Li W, Lee S, Manthiram A (2020) High-Nickel NMA: a cobalt-free alternative to NMC and NCA cathodes for lithium-ion batteries. Adv Mater 32:2002718

    Article  CAS  Google Scholar 

  13. Ma R, Zhao ZK, Fu JL, Lv HJ, Li CL, Wu BR, Mu DB, Wu F (2020) Tuning cobalt-free nickel-rich layered LiNi0.9Mn0.1O2 cathode material for lithium-ion batteries. ChemElectroChem 7:2637–2642

    Article  CAS  Google Scholar 

  14. Duan JG, Hu GR, Cao YB, Tan CP, Wu C, Du K, Peng ZD (2016) Enhanced electrochemical performance and storage property of LiNi0.815Co0.15Al0.035O2 via Al gradient doping. J Power Sources 326:322–330

    Article  CAS  Google Scholar 

  15. Bang HJ, Kim DH, Bae YC, Prakash J, Sun YK (2008) Effects of metal ions on the structural and thermal stabilities of Li[Ni1-x-yCoxMny]O2 (x+y≤0.5) studied by in situ high temperature XRD. J Electrochem Soc 155:A952–A958

    Article  CAS  Google Scholar 

  16. Kima HG, Myung ST, Lee JK, Sun YK (2011) Effects of manganese and cobalt on the electrochemical and thermal properties of layered Li[Ni0.52Co0.16+xMn0.32−x]O2 cathode materials. J Power Sources 196:6710–6715

    Article  Google Scholar 

  17. Ryu HH, Park KJ, Yoon DR, Aishova A, Yoon CS, Sun YK (2019) Li[Ni0.9Co0.09W0.01]O2: a new type of layered oxide cathode with high cycling stability. Adv Energy Mater 9:1902698

    Article  CAS  Google Scholar 

  18. Chen YX, Li YJ, Li W, Cao GL, Tang SY, Su QY, Deng SY, Guo J (2018) High-voltage electrochemical performance of LiNi0.5Co0.2Mn0.3O2 cathode material via the synergetic modification of the Zr/Ti elements. Electrochim Acta 281:48–59

    Article  CAS  Google Scholar 

  19. Wu F, Liu N, Chen L, Su Y, Tan G, Bao L, Zhang Q, Lu Y, Wang J, Chen S, Tan J (2019) Improving the reversibility of the H2–H3 phase transitions for layered Ni-rich oxide cathode towards retarded structural transition and enhanced cycle stability. Nano Energy 59:50–57

    Article  CAS  Google Scholar 

  20. You LZ, Chu BB, Li GX, Huang T, Yu AS (2021) H3BO3 washed LiNi08Co0.1Mn0.1O2 with enhanced electrochemical performance and storage characteristics. J Power Sources 482:228940

    Article  CAS  Google Scholar 

  21. Zhang Z, Zhou PF, Meng HJ, Chen CC, Cheng FY, Tao ZL, Chen J (2017) Amorphous Zr(OH)4 coated LiNi0.915Co0.075Al0.01O2 cathode material with enhanced electrochemical performance for lithium ion batteries. J Energy Chem 26:481–487

    Article  Google Scholar 

  22. Tang ZF, Bao JJ, Du QX, Shao Y, Gao MH, Zou BK, Chen CH (2016) Surface surgery of the nickel-rich cathode material LiNi0.815Co0.15Al0.035O2: toward a complete and ordered surface layered structure and better electrochemical properties. ACS Appl Mater Interfaces 8:34879–34887

    Article  CAS  Google Scholar 

  23. Yoon WS, Chung KY, McBreen J, Yang XQ (2006) A comparative study on structural changes of LiCo1/3Ni1/3Mn1/3O2 and LiNi0.8Co0.15Al0.05O2 during first charge using in situ XRD. Electrochem Commun 8:1257–1262

    Article  CAS  Google Scholar 

  24. Jung HG, Hassoun J, Park JB, Sun YK, Scrosati B (2012) An improved high-performance lithium–air battery. Nat Chem 4:579–585

    Article  CAS  Google Scholar 

  25. Rui XH, Ding N, Liu J, Li C, Chen CH (2010) Analysis of the chemical diffusion coefficient of lithium ions in Li3V2(PO4)3. Electrochim Acta 55:2384–2390

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shiguo Xu or Kaihua Xu.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, A., Xu, S., Xu, K. et al. Comparative studies of tungsten and zirconium doping on single crystal cobalt-free cathode material. Ionics 27, 4241–4248 (2021). https://doi.org/10.1007/s11581-021-04204-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-021-04204-9

Keywords

Navigation